CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Bell, L. E. Cooling, heating, generating power, and Recovering Waste Heat with Thermoelectric Systems. Science 321, 1457–1461 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Appel, O. & Gelbstein, Y. A comparison between the effects of Sb and Bi Doping on the thermoelectric properties of the Ti0.3Zr0.35Hf0.35NiSn half-Heusler alloy. J. Electron. Mater. 43, 1976–1982 (2013).

    ADS 

    Google Scholar
     

  • 3.

    Guttmann, G. M., Dadon, D. & Gelbstein, Y. Electronic tuning of the transport properties of off-stoichiometric PbxSn1−xTe thermoelectric alloys by Bi2Te3 doping. J. Appl. Phys. 118, 065102 (2015).

    ADS 

    Google Scholar
     

  • 4.

    Komisarchik, G., Fuks, D. & Gelbstein, Y. High thermoelectric potential of n-type Pb1−xTixTe alloys. J. Appl. Phys. 120, 055104 (2016).

    ADS 

    Google Scholar
     

  • 5.

    Cohen, I., Kaller, M., Komisarchik, G., Fuks, D. & Gelbstein, Y. Enhancement of the thermoelectric properties of n-type PbTe by Na and Cl co-doping. J. Mater. Chem. C 3, 9559–9564 (2015).

    CAS 

    Google Scholar
     

  • 6.

    Sadia, Y., Aminov, Z., Mogilyansky, D. & Gelbstein, Y. Texture anisotropy of higher manganese silicide following arc-melting and hot-pressing. Intermetallics 68, 71–77 (2016).

    CAS 

    Google Scholar
     

  • 7.

    Tang, Y. et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 14, 1223–1228 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Imasato, K. et al. Metallic n-type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance. Adv. Mater. 32, 1908218 (2020).

    CAS 

    Google Scholar
     

  • 9.

    Nolas G. S., Sharp J., Goldsmid J. Thermoelectrics: Basic Principles And New Materials Developments (Springer Science & Business Media, 2013).

  • 10.

    Rowe D. M. CRC handbook of Thermoelectrics (CRC press, 1995).

  • 11.

    Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Xie, H. et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-Heusler thermoelectric materials. Adv. Funct. Mater. 23, 5123–5130 (2013).

    CAS 

    Google Scholar
     

  • 13.

    Wang, S. et al. On intensifying carrier impurity scattering to enhance thermoelectric performance in Cr-Doped CeyCo4Sb12. Adv. Funct. Mater. 25, 6660–6670 (2015).

    CAS 

    Google Scholar
     

  • 14.

    Fischetti M. V., Vandenberghe W. G. Advanced Physics Of Electron Transport In Semiconductors And Nanostructures. (Springer, 2016).

  • 15.

    Wang, H., Pei, Y., LaLonde, A. D. & Snyder, G. J. Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc. Natl Acad. Sci. USA 109, 9705 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Delaire, O. et al. Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10, 614–619 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Shiga, T. et al. Microscopic mechanism of low thermal conductivity in lead telluride. Phys. Rev. B 85, 155203 (2012).

    ADS 

    Google Scholar
     

  • 18.

    Li, C. W. et al. Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics. Phys. Rev. Lett. 112, 175501 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7, 811–815 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Lan, Y., Minnich, A. J., Chen, G. & Ren, Z. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357–376 (2010).

    CAS 

    Google Scholar
     

  • 21.

    Ma, J. et al. Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. Nat. Nanotechnol. 8, 445 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Ma, J. et al. Phonon scattering rates and atomic ordering in Ag1−xSb1+xTe2+x (x=0,0.1,0.2) investigated with inelastic neutron scattering and synchrotron diffraction. Phys. Rev. B 90, 134303 (2014).

    ADS 

    Google Scholar
     

  • 23.

    Li, B. et al. Liquid-like thermal conduction in intercalated layered crystalline solids. Nat. Mater. 17, 226–230 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Peter Y., Cardona M. Fundamentals Of Semiconductors: Physics And Materials Properties (Springer Science & Business Media, 2010).

  • 25.

    LaBotz, R. J. & Mason, D. R. The thermal conductivities of Mg2Si and Mg2Ge. J. Electrochem. Soc. 110, 121–126 (1963).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Klemens, P. G. Thermal resistance due to point defects at high temperatures. Phys. Rev. 119, 507–509 (1960).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Kōmoto K., Mori T. Thermoelectric Nanomaterials: Materials Design and Applications. (Springer, 2013).

  • 28.

    Wang, H., Schechtel, E., Pei, Y. & Snyder, G. J. High thermoelectric efficiency of n-type PbS. Adv. Energy Mater. 3, 488–495 (2013).

    CAS 

    Google Scholar
     

  • 29.

    Zawadzki, W. Electron transport phenomena in small-gap semiconductors. Adv. Phys. 23, 435–522 (1974).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Caillat, T., Borshchevsky, A. & Fleurial, J. P. Properties of single crystalline semiconducting CoSb3. J. Appl. Phys. 80, 4442–4449 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Levinshtein M., Rumyantsev S., Shur M. Handbook Series on Semiconductor Parameters (Word Scientific, 1996).

  • 32.

    Sun, H. L., Yang, C. L., Wang, M. S. & Ma, X. G. Remarkably high thermoelectric efficiencies of the half-Heusler compounds BXGa (X = Be, Mg, and Ca). ACS Appl. Mater. Interfaces 12, 5838–5846 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Fu, C. et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 6, 8144 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Xing, Y. et al. High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. Energy Environ. Sci. 12, 3390–3399 (2019).

    CAS 

    Google Scholar
     

  • 35.

    Aliev, F. G. Gap at Fermi level in some new d- and f-electron intermetallic compounds. Phys. B 171, 199–205 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Aliev, F. G., Kozyrkov, V. V., Moshchalkov, V. V., Scolozdra, R. V. & Durczewski, K. Narrow band in the intermetallic compounds MNiSn (M=Ti, Zr, Hf). Z. Phys. B Condens. Matter 80, 353–357 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Uher, C., Yang, J., Hu, S., Morelli, D. T. & Meisner, G. P. Transport properties of pure and doped MNiSn (M=Zr, Hf). Phys. Rev. B 59, 8615–8621 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Joshi, G. et al. Enhancement in thermoelectric figure-of-merit of an N-type half-Heusler compound by the nanocomposite approach. Adv. Energy Mater. 1, 643–647 (2011).

    CAS 

    Google Scholar
     

  • 39.

    Yu, J. et al. Unique role of refractory Ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials. Adv. Energy Mater. 8, 1701313 (2018).


    Google Scholar
     

  • 40.

    Xie, H. et al. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci. Rep. 4, 6888 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Fu, C., Zhu, T., Liu, Y., Xie, H. & Zhao, X. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1. Energy Environ. Sci. 8, 216–220 (2015).

    CAS 

    Google Scholar
     

  • 42.

    Qiu, Q. et al. Grain boundary scattering of charge transport in n-type (Hf,Zr)CoSb half-Heusler thermoelectric Materials. Adv. Energy Mater. 9, 1803447 (2019).


    Google Scholar
     

  • 43.

    Sekimoto, T., Kurosaki, K., Muta, H. & Yamanaka, S. High-thermoelectric figure of merit realized in p-type half-Heusler compounds: ZrCoSnxSb1-x. Jpn J. Appl. Phys. 46, L673–L675 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Shuai, J. et al. Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties. Energy Environ. Sci. 10, 799–807 (2017).

    CAS 

    Google Scholar
     

  • 45.

    Kuo, J. J. et al. Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy Environ. Sci. 11, 429–434 (2018).

    CAS 

    Google Scholar
     

  • 46.

    Fu, C. et al. Revealing the intrinsic electronic structure of 3D half‐Heusler thermoelectric materials by angle‐resolved photoemission spectroscopy. Adv. Sci. 7, 1902409 (2020).

    CAS 

    Google Scholar
     

  • 47.

    Chen, S. et al. Thermal conductivity of isotopically modified graphene. Nat. Mater. 11, 203–207 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Lindsay, L., Broido, D. A. & Reinecke, T. L. Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: A first-principles study. Phys. Rev. B 88, 144306 (2013).

    ADS 

    Google Scholar
     

  • 49.

    Fu, C. et al. Enhancing the figure of merit of heavy-band thermoelectric materials through hierarchical phonon scattering. Adv. Sci. 3, 1600035 (2016).


    Google Scholar
     

  • 50.

    Zhou, J. et al. Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers. Nat. Commun. 9, 1721 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Born M., Huang K. Dynamical Theory Of Crystal Lattices. (Clarendon press, 1954).

  • 52.

    Ahn, D. Theory of polar‐optical‐phonon scattering in a semiconductor quantum wire. J. Appl. Phys. 69, 3596–3600 (1991).

    ADS 

    Google Scholar
     

  • 53.

    Kandpal, H. C., Felser, C. & Seshadri, R. Covalent bonding and the nature of band gaps in some half-Heusler compounds. J. Phys. D Appl. Phys. 39, 776–785 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Feng, Z., Fu, Y., Zhang, Y. & Singh, D. J. Characterization of rattling in relation to thermal conductivity: ordered half-Heusler semiconductors. Phys. Rev. B 101, 064301 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 55.

    Kohn, W. Image of the Fermi Surface in the vibration spectrum of a metal. Phys. Rev. Lett. 2, 393–394 (1959).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Singh J. Electronic And Optoelectronic Properties Of Semiconductor Structures (Cambridge University Press, 2007).

  • 57.

    Zeier, W. G. et al. Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nat. Rev. Mater. 1, 16032 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Ridley B. K. Quantum Processes In Semiconductors (Oxford University Press, 2013).

  • 59.

    Wang, Y. et al. Doubling the ZT record of TiS2-based thermoelectrics by incorporation of ionized impurity scattering. J. Mater. Chem. C 6, 9345–9353 (2018).

    CAS 

    Google Scholar
     

  • 60.

    He, R. et al. Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb. Proc. Natl Acad. Sci. USA 113, 13576–13581 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Azuah, R. T. et al. DAVE: a comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Natl Inst. Stand. Technol. 114, 341–358 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Lin, Y., Islam, F. & Kresh, M. Multiphonon: phonon density of states tools for inelastic neutron scattering powder data. J. Open Source Softw. 3, 440 (2018).

    ADS 

    Google Scholar
     

  • 63.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 64.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS 

    Google Scholar
     

  • 65.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    CAS 

    Google Scholar
     

  • 67.

    Li, W., Carrete, J. A., Katcho, N. & Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 68.

    Sohier, T., Gibertini, M., Calandra, M., Mauri, F. & Marzari, N. Breakdown of optical phonons’ splitting in two-dimensional materials. Nano Lett. 17, 3758–3763 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Lyddane, R. H., Sachs, R. G. & Teller, E. On the polar vibrations of alkali halides. Phys. Rev. 59, 673–676 (1941).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 70.

    Ehrenreich, H. Screening effects in polar semiconductors. J. Phys. Chem. Solids 8, 130–135 (1959).

    ADS 
    CAS 

    Google Scholar
     



  • Source link

    One thought on “Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials”
    1. I will right away grab your rss as I can not to find your email subscription hyperlink or e-newsletter service. Do you have any? Please let me realize in order that I may subscribe. Thanks.

    Leave a Reply

    Your email address will not be published. Required fields are marked *