CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 4, 806–810 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Kurz, W. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).

    PubMed 

    Google Scholar
     

  • 4.

    Müller, J. et al. Increasing disturbance demands new policies to conserve intact forest. Conserv. Lett. 12, e12449 (2019).


    Google Scholar
     

  • 5.

    Lindenmayer, D., Burton, P. J. & Franklin, J. F. Salvage Logging and its Ecological Consequences. (Island Press, 2008).

  • 6.

    Leverkus, A. B. et al. Salvage logging effects on regulating ecosystem services and fuel loads. Front. Ecol. Environ. 18, 391–400 (2020).


    Google Scholar
     

  • 7.

    Thorn, S. et al. Impacts of salvage logging on biodiversity-a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).

    PubMed 

    Google Scholar
     

  • 8.

    Cobb, T. P. et al. Effects of postfire salvage logging on deadwood-associated beetles. Conserv. Biol. 25, 94–104 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Leverkus, A. B., Lindenmayer, D. B., Thorn, S. & Gustafsson, L. Salvage logging in the world’s forests: Interactions between natural disturbance and logging need recognition. Glob. Ecol. Biogeogr. 27, 1140–1154 (2018).


    Google Scholar
     

  • 10.

    Morissette, J. L., Cobb, T. P., Brigham, R. M. & James, P. C. The response of boreal forest songbird communities to fire and post-fire harvesting. Can. J. Res. Can. Rech. 32, 2169–2183 (2002).


    Google Scholar
     

  • 11.

    Georgiev, K. B. et al. Salvage logging changes the taxonomic, phylogenetic and functional successional trajectories of forest bird communities. J. Appl. Ecol. 1365-2664, 13599 (2020).


    Google Scholar
     

  • 12.

    Lindenmayer, D. B., Mcburney, L., Blair, D., Wood, J. & Banks, S. C. From unburnt to salvage logged: quantifying bird responses to different levels of disturbance severity. J. Appl. Ecol. 55, 1626–1636 (2018).

  • 13.

    Blair, D. P., McBurney, L. M., Blanchard, W., Banks, S. C. & Lindenmayer, D. B. Disturbance gradient shows logging affects plant functional groups more than fire. Ecol. Appl. 26, 2280–2301 (2016).

    PubMed 

    Google Scholar
     

  • 14.

    Noss, R. F. & Lindenmayer, D. B. The ecological effects of salvage logging after natural disturbance. Conserv. Biol. 20, 946–948 (2006).


    Google Scholar
     

  • 15.

    Hutto, R. L. Toward meaningful snag-management guidelines for postfire salvage logging in North American conifer forests. Conserv. Biol. 20, 984–993 (2006).

    PubMed 

    Google Scholar
     

  • 16.

    Hutto, R. L. The ecological importance of severe wildfires: some like it hot. Ecol. Appl. 18, 1827–1834 (2008).

    PubMed 

    Google Scholar
     

  • 17.

    Thorn, S., Müller, J. & Leverkus, A. B. Preventing European forest diebacks. Science 365, 1388.2–1388 (2019).


    Google Scholar
     

  • 18.

    Stokstad, E. Salvage logging research continues to generate sparks. Science 311, 761 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Franklin, J. F. et al. Threads of continuity: ecosystem disturbances, biological legacies and ecosystem recovery. Conserv. Biol. Pract. 1, 8–16 (2000).


    Google Scholar
     

  • 20.

    Lindenmayer, D., Thorn, S. & Banks, S. Please do not disturb ecosystems further. Nat. Ecol. Evol. 1, 0031 (2017).


    Google Scholar
     

  • 21.

    Burivalova, Z., Şekercioğlu, Ç. H. & Koh, L. P. Thresholds of logging intensity to maintain tropical forest biodiversity. Curr. Biol. 24, 1893–1898 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    França, F. M., Frazão, F. S., Korasaki, V., Louzada, J. & Barlow, J. Identifying thresholds of logging intensity on dung beetle communities to improve the sustainable management of Amazonian tropical forests. Biol. Conserv. 216, 115–122 (2017).


    Google Scholar
     

  • 23.

    Gustafsson, L. et al. Retention forestry to maintain multifunctional forests: a world perspective. Bioscience 62, 633–645 (2012).


    Google Scholar
     

  • 24.

    Schmiegelow, F. K. A., Stepnisky, D. P., Stambaugh, C. A. & Koivula, M. Reconciling salvage logging of boreal forests with a natural-disturbance management model. Conserv. Biol. 20, 971–983 (2006).

    PubMed 

    Google Scholar
     

  • 25.

    Ministry of Agriculture and Forestry, F. Forest Damages Prevention Act (1087/2013). (2013).

  • 26.

    De Grandpré, L. et al. Incorporating insect and wind disturbances in a natural disturbance-based management framework for the boreal forest. Forests 9, 1–20 (2018).


    Google Scholar
     

  • 27.

    Chao, A., Colwell, R. K., Gotelli, N. J. & Thorn, S. Proportional mixture of two rarefaction/extrapolation curves to forecast biodiversity changes under landscape transformation. Ecol. Lett. 22, 1913–1922 (2019).

    PubMed 

    Google Scholar
     

  • 28.

    Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • 29.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Thorn, S. et al. Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests. Ecology 0, 1–8 (2020).


    Google Scholar
     

  • 31.

    Hyvärinen, E., Kouki, J. & Martikainen, P. Fire and green-tree retention in conservation of red-listed and rare deadwood-dependent beetles in Finnish boreal forests. Conserv. Biol. 20, 1711–1719 (2006).

    PubMed 

    Google Scholar
     

  • 32.

    Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta-analysis. J. Appl. Ecol. 51, 1669–1679 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Entling, W., Schmidt, M. H., Bacher, S., Brandl, R. & Nentwig, W. Niche properties of Central European spiders: Shading, moisture and the evolution of the habitat niche. Glob. Ecol. Biogeogr. 16, 440–448 (2007).


    Google Scholar
     

  • 34.

    Swanson, M. E. et al. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front. Ecol. Environ. 9, 117–125 (2011).


    Google Scholar
     

  • 35.

    Lindenmayer, D. B. & Ough, K. Salvage logging in the montane ash eucalypt forests of the Central Highlands of Victoria and its potential impacts on biodiversity. Conserv. Biol. 20, 1005–1015 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Banks-Leite, C. et al. Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science. J. Appl. Ecol. 51, 849–859 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Kortmann, M. et al. Beauty and the beast: how a bat utilizes forests shaped by outbreaks of an insect pest. Anim. Conserv. 21, 21–30 (2018).


    Google Scholar
     

  • 38.

    Mikoláš, M. et al. Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. Ecol. Manag. 405, 210–218 (2017).


    Google Scholar
     

  • 39.

    Leverkus, A. B., Gustafsson, L., Rey Benayas, J. M. & Castro, J. Does post-disturbance salvage logging affect the provision of ecosystem services? A systematic review protocol. Environ. Evid. 4, 16 (2015).


    Google Scholar
     

  • 40.

    Hutto, R. L. & Young, J. Regional landbird monitoring: perspectives from the Northern Rocky Mountains. Wildl. Soc. Bull. 30, 738–750 (2002).


    Google Scholar
     

  • 41.

    Zmihorski, M. The effect of windthrow and its management on breeding bird communities in a managed forest. Biodivers. Conserv. 19, 1871–1882 (2010).


    Google Scholar
     

  • 42.

    Thorn, S. et al. Changes in the dominant assembly mechanism drive species loss caused by declining resources. Ecol. Lett. 19, 163–170 (2016).

    MathSciNet 
    PubMed 

    Google Scholar
     

  • 43.

    Leverkus, A. B. et al. Salvage logging effects on regulating and supporting ecosystem services–a systematic map. Can. J. Res. 18, 1–18 (2018).


    Google Scholar
     

  • 44.

    Mehr, M., Brandl, R., Kneib, T. & Müller, J. The effect of bark beetle infestation and salvage logging on bat activity in a national park. Biodivers. Conserv. 21, 2775–2786 (2012).


    Google Scholar
     

  • 45.

    Fontaine, J. B., Donato, D. C., Robinson, W. D., Law, B. E. & Kauffman, J. B. Bird communities following high-severity fire: response to single and repeat fires in a mixed-evergreen forest, Oregon, USA. Ecol. Manag. 257, 1496–1504 (2009).


    Google Scholar
     

  • 46.

    Cahall, R. E. & Hayes, J. P. Influences of postfire salvage logging on forest birds in the Eastern Cascades, Oregon, USA. Ecol. Manag. 257, 1119–1128 (2009).


    Google Scholar
     

  • 47.

    Castro, J., Moreno-Rueda, G. & Hódar, J. Experimental test of postfire management in pine forests: impact of salvage logging versus partial cutting and nonintervention on bird-species assemblages. Conserv. Biol. 24, 810–819 (2010).

    PubMed 

    Google Scholar
     

  • 48.

    Rost, J., Clavero, M., Brotons, L. & Pons, P. The effect of postfire salvage logging on bird communities in Mediterranean pine forests: the benefits for declining species. J. Appl. Ecol. 49, 644–651 (2012).


    Google Scholar
     

  • 49.

    Zmihorski, M. et al. Early post-fire bird community in European boreal forest: comparing salvage-logged with non-intervention areas. Glob. Ecol. Conserv. 18, e00636 (2019).


    Google Scholar
     

  • 50.

    Choi, C. Y., Lee, E. J., Nam, H. Y. & Lee, W. S. Effects of postfire logging on bird populations and communities in burned forests. J. Korean . Soc. 96, 115–123 (2007).


    Google Scholar
     

  • 51.

    Lee, E.-J., Lee, W.-S., Son, S. H. & Rhim, S.-J. Differences in bird communities in postfire silvicultural practices stands within pine forest of South Korea. Landsc. Ecol. Eng. 7, 137–143 (2011).


    Google Scholar
     

  • 52.

    Koivula, M. & Spence, J. R. Effects of post-fire salvage logging on boreal mixed-wood ground beetle assemblages (Coleoptera, Carabidae). Ecol. Manag. 236, 102–112 (2006).


    Google Scholar
     

  • 53.

    Wermelinger, B. et al. Impact of windthrow and salvage-logging on taxonomic and functional diversity of forest arthropods. Ecol. Manag. 391, 9–18 (2017).


    Google Scholar
     

  • 54.

    Hernández-Hernández, R., Castro, J., Del Arco Aguilar, M., Fernández-López, Á. B. & González-Mancebo, J. M. Post-fire salvage logging imposes a new disturbance that retards succession: the case of bryophyte communities in a Macaronesian laurel forest. Forests 8, 1–16 (2017).


    Google Scholar
     

  • 55.

    Thorn, S. et al. Guild-specific responses of forest Lepidoptera highlight conservation-oriented forest management – implications from conifer-dominated forests. Ecol. Manag. 337, 41–47 (2015).


    Google Scholar
     

  • 56.

    Durska, E. Effects of disturbances on scuttle flies (Diptera: Phoridae) in Pine Forests. Biodivers. Conserv. 22, 1991–2021 (2013).


    Google Scholar
     

  • 57.

    Donato, D. C., Fontaine, J. B., Kauffman, J. B., Robinson, D. & Law, B. E. Fuel mass and forest structure following stand-replacement fire and post-fire logging in a mixed-evergreen forest. Int. J. Wildl. Fire 22, 652–666 (2013).


    Google Scholar
     

  • 58.

    Kurulok, S. E. & Macdonald, S. E. Impacts of postfire salvage logging on understory plant communities of the boreal mixedwood forest 2 and 34 years after disturbance. Can. J. Res. 37, 2637–2651 (2007).


    Google Scholar
     

  • 59.

    Macdonald, S. E. Effects of partial post-fire salvage harvesting on vegetation communities in the boreal mixedwood forest region of northeastern Alberta, Canada. Ecol. Manag. 239, 21–31 (2007).


    Google Scholar
     

  • 60.

    Fornwalt, P. J. et al. Short-term understory plant community responses to salvage logging in beetle-affected lodgepole pine forests. Ecol. Manag. 409, 84–93 (2018).


    Google Scholar
     

  • 61.

    Waldron, K., Ruel, J.-C., Gauthier, S., De Grandpré, L. & Peterson, C. J. Effects of post-windthrow salvage logging on microsites, plant composition and regeneration. Appl. Veg. Sci. 17, 323–337 (2014).


    Google Scholar
     

  • 62.

    Leverkus, A. B., Lorite, J., Navarro, F. B., Sánchez-Cañete, E. P. & Castro, J. Post-fire salvage logging alters species composition and reduces cover, richness, and diversity in Mediterranean plant communities. J. Environ. Manag. 133, 323–331 (2014).


    Google Scholar
     

  • 63.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).


    Google Scholar
     

  • 64.

    Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).


    Google Scholar
     

  • 65.

    Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).

    MathSciNet 
    CAS 

    Google Scholar
     

  • 66.

    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933 (2001).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *