CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Wolszczan, A. & Frail, D. A. A planetary system around the millisecond pulsar PSR1257+12. Nature 355, 145–147. https://doi.org/10.1038/355145a0 (1992).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359. https://doi.org/10.1038/378355a0 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Siemion, A. et al. Searching for extraterrestrial intelligence with the square kilometre array. In Advancing Astrophysics with the Square Kilometre Array (AASKA14), 116. https://doi.org/10.22323/1.215.0116 (2015).

  • 4.

    Zhang, Z.-S. et al. First SETI observations with China’s five-hundred-meter aperture spherical radio telescope (FAST). Astrophys. J. 891, 174. https://doi.org/10.3847/1538-4357/ab7376 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Drake, F. D. Project Ozma. Phys. Today 14, 40–46. https://doi.org/10.1063/1.3057500 (1961).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Sagan, C. Direct contact among galactic civilizations by relativistic interstellar spaceflight. Planet. Space Sci. 11, 485–498. https://doi.org/10.1016/0032-0633(63)90072-2 (1963).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Prantzos, N. A probabilistic analysis of the Fermi paradox in terms of the Drake formula: the role of the L factor. Mon. Not. R. Astron. Soc. 493, 3464–3472. https://doi.org/10.1093/mnras/staa512 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    Tipler, F. J. Extraterrestrial intelligent beings do not exist. Q. J. R. Astron. Soc. 21, 267–281 (1980).

    ADS 

    Google Scholar
     

  • 9.

    Lineweaver, C. H. Paleontological tests: Human-like intelligence is not a convergent feature of evolution. In From Fossils to Astrobiology: Records of Life on Earth and Search for Extraterrestrial Biosignatures (eds Seckbach, J. & Walsh, M.) 353–368 (Springer, Dordrecht, 2008). https://doi.org/10.1007/978-1-4020-8837-7_17.


    Google Scholar
     

  • 10.

    Pearman, J. P. T. Extraterrestrial intelligent life and interstellar communication: An informal discussion. In Interstellar communication. The search for extraterrestrial life (ed. Cameron, A. G. W.) 287–293 (W.A. Benjamin Inc, New York, 1963).


    Google Scholar
     

  • 11.

    Cameron, A. G. W. Communicating with intelligent life on other worlds. Sky Telesc. 26, 258 (1963).

    ADS 

    Google Scholar
     

  • 12.

    Drake, F. D. The radio search for intelligent extraterrestrial life. In Current Aspects of Exobiology (eds Mamikunian, G. & Briggs, M.) 323–345 (Springer, Berlin, 1965). https://doi.org/10.1016/B978-1-4832-0047-7.50015-0.


    Google Scholar
     

  • 13.

    Oliver, B. M. Proximity of galactic civilizations. Icarus 25, 360–367. https://doi.org/10.1016/0019-1035(75)90031-7 (1975).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Freeman, J. & Lampton, M. Interstellar archaeology and the prevalence of intelligence. Icarus 25, 368–369. https://doi.org/10.1016/0019-1035(75)90032-9 (1975).

    ADS 
    Article 

    Google Scholar
     

  • 15.

    Wallenhorst, S. G. The Drake equation reexamined. Q. J. R. Astron. Soc. 22, 380 (1981).

    ADS 

    Google Scholar
     

  • 16.

    Drake, F. & Sobel, D. Is anyone out there? The scientific search for extraterrestrial intelligence (Delacorte Press, New York, 1992).


    Google Scholar
     

  • 17.

    Forgan, D. H. A numerical testbed for hypotheses of extraterrestrial life and intelligence. Int. J. Astrobiol. 8, 121–131. https://doi.org/10.1017/S1473550408004321 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Maccone, C. The statistical Drake equation. Acta Astronautica 67, 1366–1383. https://doi.org/10.1016/j.actaastro.2010.05.003 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Frank, A. & Sullivan, I. W. T. A new empirical constraint on the prevalence of technological species in the universe. Astrobiology 16, 359–362. https://doi.org/10.1089/ast.2015.1418 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Bloetscher, F. Using predictive Bayesian Monte Carlo-Markov Chain methods to provide a probablistic solution for the Drake equation. Acta Astronautica 155, 118–130. https://doi.org/10.1016/j.actaastro.2018.11.033 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    Totani, T. Emergence of life in an inflationary universe. Sci. Rep. 10, 1671. https://doi.org/10.1038/s41598-020-58060-0 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Sepkoski, J. J. A compendium of fossil marine animal genera. Bull. Am. Paleontol. 363, 1–560 (2002).


    Google Scholar
     

  • 23.

    Rohde, R. A. & Muller, R. A. Cycles in fossil diversity. Nature 434, 208–210. https://doi.org/10.1038/nature03339 (2005).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 24.

    Rampino, M., Caldeira, K. & Prokoph, A. What causes mass extinctions? Large asteroid/comet impacts, flood-basalt volcanism, and ocean anoxia-Correlations and cycles. Geol. Soc. Am. Spec. Paper 542, 271–302. https://doi.org/10.1130/2019.2542(14) (2019).

    Article 

    Google Scholar
     

  • 25.

    Rampino, M. R. & Shen, S.-Z. The end-Guadalupian (259.8 Ma) biodiversity crisis: the sixth major mass extinction?. Hist. Biol.. https://doi.org/10.1080/08912963.2019.1658096 (2019).

    Article 

    Google Scholar
     

  • 26.

    Signor, P. & Lipps, J. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geol. Soc. Am. Spec. Paper 190, 291–296. https://doi.org/10.1130/SPE190 (1982).

    Article 

    Google Scholar
     

  • 27.

    Hesselbo, S. P., Robinson, S. A., Surlyk, F. & Piasecki, S. Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism?. Geology 30, 251–254. https://doi.org/10.1130/0091-7613(2002)030<0251:TAMEAT>2.0.CO;2 (2002).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Kamo, S. L. et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet. Sci. Lett. 214, 75–91. https://doi.org/10.1016/S0012-821X(03)00347-9 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Jones, D. S., Martini, A. M., Fike, D. A. & Kaiho, K. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology 45, 631–634. https://doi.org/10.1130/G38940.1 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary. Science 327, 1214–1218. https://doi.org/10.1126/science.1177265 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    LaViolette, P. Evidence for a solar flare cause of the pleistocene mass extinction. Radiocarbon 53, 303–323. https://doi.org/10.1017/S0033822200056575 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Lingam, M. & Loeb, A. Risks for life on habitable planets from superflares of their host stars. Astrophys. J. 848, 41. https://doi.org/10.3847/1538-4357/aa8e96 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Melott, A. L. et al. Did a gamma-ray burst initiate the late Ordovician mass extinction?. Int. J. Astrobiol. 3, 55–61. https://doi.org/10.1017/S1473550404001910 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Maccone, C. SETI and SEH (statistical equation for habitables). Acta Astronautica 68, 63–75. https://doi.org/10.1016/j.actaastro.2010.06.010 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Chen, Z.-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375–383. https://doi.org/10.1038/ngeo1475 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Mojzsis, S. J. et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59. https://doi.org/10.1038/384055a0 (1996).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Rosing, M. T. (^{13})C-depleted carbon microparticles in (>3700)-Ma sea-floor sedimentary rocks from West Greenland. Science 283, 674. https://doi.org/10.1126/science.283.5402.674 (1999).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    van Zuilen, M. A., Lepland, A. & Arrhenius, G. Reassessing the evidence for the earliest traces of life. Nature 418, 627–630. https://doi.org/10.1038/nature00934 (2002).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Ohtomo, Y., Kakegawa, T., Ishida, A., Nagase, T. & Rosing, M. T. Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat. Geosci. 7, 25–28. https://doi.org/10.1038/ngeo2025 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Bell, E. A., Boehnke, P., Harrison, T. M. & Mao, W. L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. 112, 14518–14521. https://doi.org/10.1073/pnas.1517557112 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Pearce, B. K. D., Tupper, A. S., Pudritz, R. E. & Higgs, P. G. Constraining the Time Interval for the Origin of Life on Earth. Astrobiology 18, 343–364. https://doi.org/10.1089/ast.2017.1674 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Cohen, B. A., Swindle, T. D. & Kring, D. A. Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290, 1754–1756. https://doi.org/10.1126/science.290.5497.1754 (2000).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Nisbet, E. G. & Sleep, N. H. The habitat and nature of early life. Nature 409, 1083–1091. https://doi.org/10.1038/35059210 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Line, M. A. The enigma of the origin of life and its timing. Microbiology 148, 21–27. https://doi.org/10.1099/00221287-148-1-21 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Zahnle, K. et al. Emergence of a habitable planet. In Geology and Habitability of Terrestrial Planets (eds Fishbaugh, K. E. et al.) 35–78 (Springer, New York, 2007). https://doi.org/10.1007/978-0-387-74288-5_3.


    Google Scholar
     

  • 46.

    MacLeod, N. The Great Extinctions: What Causes Them and how They Shape Life (Firefly Books, Richmond Hill, 2013).


    Google Scholar
     

  • 47.

    Bains, W. & Schulze-Makuch, D. The cosmic zoo: The (near) inevitability of the evolution of complex, macroscopic life. Life 6, 25. https://doi.org/10.3390/life6030025 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • 48.

    Westby, T. & Conselice, C. J. The astrobiological copernican weak and strong limits for intelligent life. Astrophys. J. 896, 58. https://doi.org/10.3847/1538-4357/ab8225 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 49.

    Seager, S. The search for habitable planets with biosignature gases framed by a ‘Biosignature Drake Equation’. Int. J. Astrobiol. 17, 294–302. https://doi.org/10.1017/S1473550417000052 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 50.

    Sessions, A. L., Doughty, D. M., Welander, P. V., Summons, R. E. & Newman, D. K. The continuing puzzle of the great oxidation event. Curr. Biol. 19, R567–R574. https://doi.org/10.1016/j.cub.2009.05.054 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315. https://doi.org/10.1038/nature13068 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Wolf, E. T. & Toon, O. B. The evolution of habitable climates under the brightening Sun. J. Geophys. Res. Atmos. 120, 5775–5794. https://doi.org/10.1002/2015JD023302 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 53.

    Gott, J. R. Implications of the Copernican principle for our future prospects. Nature 363, 315–319. https://doi.org/10.1038/363315a0 (1993).

    ADS 
    Article 

    Google Scholar
     

  • 54.

    Chapman, C. R. & Morrison, D. Impacts on the Earth by asteroids and comets: assessing the hazard. Nature 367, 33–40. https://doi.org/10.1038/367033a0 (1994).

    ADS 
    Article 

    Google Scholar
     

  • 55.

    Rampino, M. R. Supereruptions as a threat to civilizations on earth-like planets. Icarus 156, 562–569. https://doi.org/10.1006/icar.2001.6808 (2002).

    ADS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *