CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Zhao, G.-H., Xu, X., Dye, D. & Rivera-Díaz-del-Castillo, P. E. J. Microstructural evolution and strain-hardening in TWIP Ti alloys. Acta Mater.183, 155–164 (2020).

    Article 

    Google Scholar
     

  • 2.

    Banerjee, S. & Mukhopadhyay, P. Phase Transformations, Examples from Titanium and Zirconium Alloys (Elsevier, Amsterdam, 2007).


    Google Scholar
     

  • 3.

    Haasen, P., Haasen, P. & Mordike, B. L. Physical Metallurgy (Cambridge University Press, Cambridge, 1996).


    Google Scholar
     

  • 4.

    De Cooman, B. C., Estrin, Y. & Kim, S. K. Twinning-induced plasticity (TWIP) steels. Acta Mater.142, 283–362 (2018).

    Article 

    Google Scholar
     

  • 5.

    You, L. & Song, X. A study of low Young’s modulus Ti–Nb–Zr alloys using d electrons alloy theory. Scr. Mater.67, 57–60 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Alabort, E. et al. Alloys-by-design: application to titanium alloys for optimal superplasticity. Acta Mater.178, 275–287 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Semiatin, S. L. An overview of the thermomechanical processing of α/β titanium alloys: current status and future research opportunities. Metall. Mater. Trans. A
    https://doi.org/10.1007/s11661-020-05625-3 (2020).

    Article 

    Google Scholar
     

  • 8.

    Abdel-Hady, M., Hinoshita, K. & Morinaga, M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr. Mater.55, 477–480 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Brozek, C. et al. A β-titanium alloy with extra high strain-hardening rate: design and mechanical properties. Scr. Mater.114, 60–64 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Castany, P., Gloriant, T., Sun, F. & Prima, F. Design of strain-transformable titanium alloys. Comptes Rendus Phys.19, 710–720 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater.6, 299–303 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater.122, 448–511 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Lilensten, L. et al. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater. Res. Lett.5, 110–116 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Ijaz, M. F., Kim, H. Y., Hosoda, H. & Miyazaki, S. Effect of Sn addition on stress hysteresis and superelastic properties of a Ti–15Nb–3Mo alloy. Scr. Mater.72–73, 29–32 (2014).

    Article 

    Google Scholar
     

  • 15.

    Kim, H. Y., Fukushima, T., Buenconsejo, P. J. S., Nam, T. & Miyazaki, S. Martensitic transformation and shape memory properties of Ti–Ta–Sn high temperature shape memory alloys. Mater. Sci. Eng. A528, 7238–7246 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Cai, S., Wang, L., Schaffer, J. E., Gao, J. & Ren, Y. Influence of Sn on martensitic beta Ti alloys. Mater. Sci. Eng. A743, 764–772 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Bhattacharyya, D., Viswanathan, G. B. & Fraser, H. L. Crystallographic and morphological relationships between β phase and the Widmanstätten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy. Acta Mater.55, 6765–6778 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Zhang, D. C. et al. Effect of ternary alloying elements on microstructure and superelastictity of Ti–Nb alloys. Mater. Sci. Eng. A559, 706–710 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Wang, L. et al. Superelastic effect in Ti-rich high entropy alloys via stress-induced martensitic transformation. Scr. Mater.162, 112–117 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Wang, L. et al. Ductile Ti-rich high-entropy alloy controlled by stress induced martensitic transformation and mechanical twinning. Mater. Sci. Eng. A763, 138147 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Lin, Q. et al. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Mater. Res. Lett.6, 236–243 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Nene, S. S. et al. Extremely high strength and work hardening ability in a metastable high entropy alloy. Sci. Rep.8, 9920 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Jo, Y. H. et al. FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45CoxNi35−x medium-entropy alloys. Sci. Rep.9, 2948 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Wang, P. et al. Atomic deformation mechanism and interface toughening in metastable high entropy alloy. Mater. Today
    https://doi.org/10.1016/j.mattod.2020.02.017 (2020).

    Article 

    Google Scholar
     

  • 25.

    Zhang, L. et al. Phase transformations in body-centered cubic NbxHfZrTi high-entropy alloys. Mater. Charact.142, 443–448 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature534, 227–230 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Huang, H. et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater.29, 1701678 (2017).

    Article 

    Google Scholar
     

  • 28.

    Banerjee, D. & Williams, J. C. Perspectives on titanium science and technology. Acta Mater.61, 844–879 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Chong, Y., Zheng, R., Deng, G., Shibata, A. & Tsuji, N. Investigation on the microstructure and mechanical properties of Ti-1.0Fe alloy with equiaxed α + β microstructures. Metall. Mater. Trans. A51, 2851–2862 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Bouaziz, O. & Guelton, N. Modelling of TWIP effect on work-hardening. Mater. Sci. Eng. A319–321, 246–249 (2001).

    Article 

    Google Scholar
     

  • 31.

    Bouaziz, O., Allain, S. & Scott, C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scr. Mater.58, 484–487 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Ashby, M. F. The deformation of plastically non-homogeneous materials. Philos. Mag. A J. Theor. Exp. Appl. Phys.21, 399–424 (1970).

    CAS 

    Google Scholar
     

  • 33.

    Zhu, Y. & Wu, X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater. Res. Lett.7, 393–398 (2019).

    Article 

    Google Scholar
     

  • 34.

    Bhattacharyya, D., Viswanathan, G. B., Denkenberger, R., Furrer, D. & Fraser, H. L. The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy. Acta Mater.51, 4679–4691 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Furuhara, T., Takagi, S., Watanabe, H. & Maki, T. Crystallography of grain boundary α precipitates in a β titanium alloy. Metall. Mater. Trans. A27, 1635–1646 (1996).

    Article 

    Google Scholar
     

  • 36.

    He, D. et al. Influences of deformation strain, strain rate and cooling rate on the Burgers orientation relationship and variants morphology during β→α phase transformation in a near α titanium alloy. Mater. Sci. Eng. A549, 20–29 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Miyano, N., Fujiwara, H., Ameyama, K. & Weatherly, G. C. Preferred orientation relationship of intra- and inter-granular precipitates in titanium alloys. Mater. Sci. Eng. A333, 85–91 (2002).

    Article 

    Google Scholar
     

  • 38.

    Williams, A. J., Cahn, R. W. & Barrett, C. S. The crystallography of the β-α transformation in titanium. Acta Metall.2, 117–128 (1954).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Burgers, W. G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica1, 561–586 (1934).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Soni, V., Senkov, O. N., Gwalani, B., Miracle, D. B. & Banerjee, R. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy. Sci. Rep.8, 8816 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 41.

    Kim, J. G. et al. Superior strength and multiple strengthening mechanisms in nanocrystalline TWIP steel. Sci. Rep.8, 11200 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Xu, T. et al. Precipitation behaviour during the β → α/ω phase transformation and its effect on the mechanical performance of a Ti-15Mo-2.7Nb-3Al-0.2Si alloy. Sci. Rep.9, 17628 (2019).

    ADS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *