AbstractIn this study, the seismic performance of a precast bridge substructure from an urban viaduct is investigated via shake table tests. A simple beam bridge is formed by using two precast bridge pier specimens, and one pier is implemented with an improved grouted splice sleeve coupler (GSSC) design with a shallow recess in the footing for achieving better integrity, while the other is implemented with a conventional GSSC in the pier and flat grouting bed. The two precast bridge pier specimens are first compared with each other. Another bridge specimen is then created and compared, which is supported by two cast-in-place (CIP) references with identical dimensions and mild rebars. The two bridge specimens are first tested with an isolated bearing system, followed by the fixed bearing system. From the test results, it is revealed that the isolated system with lead-rubber bearings retains good seismic isolation capability. The damage to the plastic hinge region of the CIP specimens is more severe with rebar buckling, while the strengthening effect of the GSSC elements in the pier prevents the rebars of the precast specimens from buckling. The GSSCs also limit the peak lateral displacement of the precast columns and redistribute the strain values along the longitudinal rebars. Finally, finite-element models are developed by OpenSEES with fiber elements and alternative bond–slip simulation approaches, which are in acceptable correlation with the test results.

Source link

Leave a Reply

Your email address will not be published. Required fields are marked *