[ad_1]

  • 1.

    Romanowicz, B. Using seismic waves to image Earth’s internal structure. Nature 451, 266–268 (2008).


    Google Scholar
     

  • 2.

    Dziewonski, A. M. & Romanowicz, B. A. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 1–28 (Elsevier, 2015).

  • 3.

    French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).


    Google Scholar
     

  • 4.

    Hosseini, K. et al. Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves. Geophys. J. Int. 220, 96–141 (2020).


    Google Scholar
     

  • 5.

    Waszek, L., Schmerr, N. C. & Ballmer, M. D. Global observations of reflectors in the mid-mantle with implications for mantle structure and dynamics. Nat. Commun. 9, 385 (2018).


    Google Scholar
     

  • 6.

    Garnero, E. J., McNamara, A. K. & Shim, S.-H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).


    Google Scholar
     

  • 7.

    Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Global transition zone tomography. J. Geophys. Res. Solid Earth 109, B02302 (2004).


    Google Scholar
     

  • 8.

    Kaneshima, S. Seismic scatterers in the mid-lower mantle. Phys. Earth Planet. Inter. 257, 105–114 (2016).


    Google Scholar
     

  • 9.

    Birch, F. Elasticity and constitution of the Earth’s interior. J. Geophys. Res. 57, 227–286 (1952).


    Google Scholar
     

  • 10.

    Zhang, J. S. & Bass, J. D. Sound velocities of olivine at high pressures and temperatures and the composition of Earth’s upper mantle. Geophys. Res. Lett. 43, 9611–9618 (2016).


    Google Scholar
     

  • 11.

    Brown, J. M. & Shankland, T. J. Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys. J. Int. 66, 579–596 (1981).


    Google Scholar
     

  • 12.

    Kurnosov, A., Marquardt, H., Frost, D. J., Ballaran, T. B. & Ziberna, L. Evidence for a Fe3+-rich pyrolitic lower mantle from (Al,Fe)-bearing bridgmanite elasticity data. Nature 543, 543–546 (2017).


    Google Scholar
     

  • 13.

    Murakami, M., Ohishi, Y., Hirao, N. & Hirose, K. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature 485, 90–94 (2012).


    Google Scholar
     

  • 14.

    Gréaux, S. et al. Sound velocity of CaSiO3 perovskite suggests the presence of basaltic crust in the Earth’s lower mantle. Nature 565, 218–221 (2019).


    Google Scholar
     

  • 15.

    Crowhurst, J. C., Brown, J. M., Goncharov, A. F. & Jacobsen, S. D. Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle. Science 319, 451–453 (2008).


    Google Scholar
     

  • 16.

    Fu, S. et al. Single-crystal elasticity of (Al,Fe)-bearing bridgmanite and seismic shear wave radial anisotropy at the topmost lower mantle. Earth Planet. Sci. Lett. 518, 116–126 (2019).


    Google Scholar
     

  • 17.

    Marquardt, H. et al. Elastic softening of (Mg0.8Fe0.2)O ferropericlase across the iron spin crossover measured at seismic frequencies. Geophys. Res. Lett. 45, 6862–6868 (2018).


    Google Scholar
     

  • 18.

    Thomson, A. R. et al. Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth’s lower mantle. Nature 572, 643–647 (2019).


    Google Scholar
     

  • 19.

    Antonangeli, D. et al. Spin crossover in ferropericlase at high pressure: a seismologically transparent transition? Science 331, 64–67 (2011).


    Google Scholar
     

  • 20.

    Schulze, K. et al. Seismically invisible water in Earth’s transition zone? Earth Planet. Sci. Lett. 498, 9–16 (2018).


    Google Scholar
     

  • 21.

    Higo, Y., Inoue, T., Irifune, T., Funakoshi, K.-I. & Li, B. Elastic wave velocities of (Mg0.91Fe0.09)2SiO4 ringwoodite under P–T conditions of the mantle transition region. Phys. Earth Planet. Inter. 166, 167–174 (2008).


    Google Scholar
     

  • 22.

    Fu, S. et al. Abnormal elasticity of Fe-bearing bridgmanite in the Earth’s lower mantle. Geophys. Res. Lett. 45, 4725–4732 (2018).


    Google Scholar
     

  • 23.

    Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J. & Schilling, F. R. Single-crystal elasticity of (Mg0.9Fe0.1)O to 81 GPa. Earth Planet. Sci. Lett. 287, 345–352 (2009).


    Google Scholar
     

  • 24.

    Marquardt, H. et al. Elastic shear anisotropy of ferropericlase in Earth’s lower mantle. Science 324, 224–226 (2009).


    Google Scholar
     

  • 25.

    Badro, J. et al. Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science 300, 789–791 (2003).


    Google Scholar
     

  • 26.

    Wu, Z. & Wentzcovitch, R. M. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc. Natl Acad. Sci.USA 111, 10468–10472 (2014).


    Google Scholar
     

  • 27.

    Wu, Z. Velocity structure and composition of the lower mantle with spin crossover in ferropericlase. J. Geophys. Res. Solid Earth 121, 2304–2314 (2016).


    Google Scholar
     

  • 28.

    Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – I. Physical properties. Geophys. J. Int. 162, 610–632 (2005).


    Google Scholar
     

  • 29.

    Birch, F. The effect of pressure upon the elastic parameters of isotropic solids, according to Murnaghan’s theory of finite strain. J. Appl. Phys. 9, 279–288 (1938).


    Google Scholar
     

  • 30.

    Karki, B. B., Stixrude, L. & Wentzcovitch, R. M. High-pressure elastic properties of major materials of Earth’s mantle from first principles. Rev. Geophys. 39, 507–534 (2001).


    Google Scholar
     

  • 31.

    Bass, J. D. in Treatise on Geophysics Vol. 2 (ed. Schubert, G.) 269–291 (Elsevier, 2007).

  • 32.

    Angel, R. J., Jackson, J. M., Reichmann, H. J. & Speziale, S. Elasticity measurements on minerals: a review. Eur. J. Mineral. 21, 525–550 (2009).


    Google Scholar
     

  • 33.

    Isaak, D. G., Anderson, O. L. & Goto, T. Measured elastic moduli of single-crystal MgO up to 1800 K. Phys. Chem. Miner. 16, 704–713 (1989).


    Google Scholar
     

  • 34.

    Isaak, D. G. et al. The temperature dependence of the elasticity of Fe-bearing wadsleyite. Phys. Earth Planet. Inter. 182, 107–112 (2010).


    Google Scholar
     

  • 35.

    Loong, C.-K. Inelastic scattering and applications. Rev. Mineral. Geochem. 63, 233–254 (2006).


    Google Scholar
     

  • 36.

    Fiquet, G. et al. Application of inelastic X-ray scattering to the measurements of acoustic wave velocities in geophysical materials at very high pressure. Phys. Earth Planet. Inter. 143–144, 5–18 (2004).


    Google Scholar
     

  • 37.

    Burkel, E. Phonon spectroscopy by inelastic x-ray scattering. Rep. Prog. Phys. 63, 171–232 (2000).


    Google Scholar
     

  • 38.

    Sturhahn, W. Nuclear resonant spectroscopy. J. Phys. Condens. Matter 16, S497–S530 (2004).


    Google Scholar
     

  • 39.

    Wicks, J. K., Jackson, J. M. & Sturhahn, W. Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region. Geophys. Res. Lett. 37, L15304 (2010).


    Google Scholar
     

  • 40.

    Wicks, J. K., Jackson, J. M., Sturhahn, W. & Zhang, D. Sound velocity and density of magnesiowüstites: implications for ultralow-velocity zone topography. Geophys. Res. Lett. 44, 2148–2158 (2017).


    Google Scholar
     

  • 41.

    Finkelstein, G. J. et al. Strongly anisotropic magnesiowüstite in Earth’s lower mantle. J. Geophys. Res. 123, 4740–4750 (2018).


    Google Scholar
     

  • 42.

    Lin, J.-F. et al. Sound velocities of ferropericlase in the Earth’s lower mantle. Geophys. Res. Lett. 33, L22304 (2006).


    Google Scholar
     

  • 43.

    Mao, W. L. et al. Iron-rich post-perovskite and the origin of ultralow-velocity zones. Science 312, 564–565 (2006).


    Google Scholar
     

  • 44.

    McCammon, C. et al. Sound velocities of bridgmanite from density of states determined by nuclear inelastic scattering and first-principles calculations. Prog. Earth Planet. Sci. 3, 10 (2016).


    Google Scholar
     

  • 45.

    Jacobsen, S. D. et al. Structure and elasticity of single-crystal (Mg,Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. J. Geophys. Res. Solid Earth 107, 2037 (2002).


    Google Scholar
     

  • 46.

    Jacobsen, S. D., Spetzler, H., Reichmann, H. J. & Smyth, J. R. Shear waves in the diamond-anvil cell reveal pressure-induced instability in (Mg,Fe)O. Proc. Natl Acad. Sci. USA 101, 5867–5871 (2004).


    Google Scholar
     

  • 47.

    Jacobsen, S. D. et al. Gigahertz ultrasonic interferometry at high P and T: new tools for obtaining a thermodynamic equation of state. J. Phys. Condens. Matter 14, 11525–11530 (2002).


    Google Scholar
     

  • 48.

    Li, B. & Liebermann, R. C. Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry. Phys. Earth Planet. Inter. 233, 135–153 (2014).


    Google Scholar
     

  • 49.

    Decremps, F. et al. Sound velocity of iron up to 152 GPa by picosecond acoustics in diamond anvil cell. Geophys. Res. Lett. 41, 1459–1464 (2014).


    Google Scholar
     

  • 50.

    Edmund, E. et al. Picosecond acoustics technique to measure the sound velocities of Fe-Si alloys and Si single-crystals at high pressure. Minerals 10, 214 (2020).


    Google Scholar
     

  • 51.

    Whitfield, C. H., Brody, E. M. & Bassett, W. A. Elastic moduli of NaCl by Brillouin scattering at high pressure in a diamond anvil cell. Rev. Sci. Instrum. 47, 942–947 (1976).


    Google Scholar
     

  • 52.

    Sinogeikin, S. V. & Bass, J. D. Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. Phys. Earth Planet. Inter. 120, 43–62 (2000).


    Google Scholar
     

  • 53.

    Speziale, S., Marquardt, H. & Duffy, T. S. Brillouin scattering and its application in geosciences. Rev. Mineral. Geochem. 78, 543–603 (2014).


    Google Scholar
     

  • 54.

    Speziale, S. & Duffy, T. S. Single-crystal elastic constants of fluorite (CaF2) to 9.3 GPa. Phys. Chem. Miner. 29, 465–472 (2002).


    Google Scholar
     

  • 55.

    Kurnosov, A., Marquardt, H., Frost, D. J., Ballaran, T. B. & Ziberna, L. Kurnosov et al. reply. Nature 564, E27–E31 (2018).


    Google Scholar
     

  • 56.

    Lin, J.-F., Mao, Z., Yang, J. & Fu, S. Elasticity of lower-mantle bridgmanite. Nature 564, E18–E26 (2018).


    Google Scholar
     

  • 57.

    Yang, J., Tong, X., Lin, J.-F., Okuchi, T. & Tomioka, N. Elasticity of ferropericlase across the spin crossover in the Earth’s lower mantle. Sci. Rep. 5, 17188 (2015).


    Google Scholar
     

  • 58.

    Buchen, J. et al. High-pressure single-crystal elasticity of wadsleyite and the seismic signature of water in the shallow transition zone. Earth Planet. Sci. Lett. 498, 77–87 (2018).


    Google Scholar
     

  • 59.

    Mao, Z. et al. Elasticity of single-crystal olivine at high pressures and temperatures. Earth Planet. Sci. Lett. 426, 204–215 (2015).


    Google Scholar
     

  • 60.

    Schulze, K., Buchen, J., Marquardt, K. & Marquardt, H. Multi-sample loading technique for comparative physical property measurements in the diamond-anvil cell. High Press. Res. 37, 159–169 (2017).


    Google Scholar
     

  • 61.

    Murakami, M., Sinogeikin, S. V., Litasov, K., Ohtani, E. & Bass, J. D. Single-crystal elasticity of iron-bearing majorite to 26 GPa: implications for seismic velocity structure of the mantle transition zone. Earth Planet. Sci. Lett. 274, 339–345 (2008).


    Google Scholar
     

  • 62.

    Pamato, M. G. et al. Single crystal elasticity of majoritic garnets: Stagnant slabs and thermal anomalies at the base of the transition zone. Earth Planet. Sci. Lett. 451, 114–124 (2016).


    Google Scholar
     

  • 63.

    Sanchez-Valle, C., Wang, J. & Rohrbach, A. Effect of calcium on the elasticity of majoritic garnets and the seismic gradients in the mantle transition zone. Phys. Earth Planet. Inter. 293, 106272 (2019).


    Google Scholar
     

  • 64.

    Sinogeikin, S. V., Bass, J. D. & Katsura, T. Single-crystal elasticity of gamma-(Mg0.91Fe0.09)2SiO4 to high pressures and to high temperatures. Geophys. Res. Lett. 28, 4335–4338 (2001).


    Google Scholar
     

  • 65.

    Wang, J., Sinogeikin, S., Inoue, T. & Bass, J. D. Elastic properties of hydrous ringwoodite at high-pressure conditions. Geophys. Res. Lett. 33, L14308 (2006).


    Google Scholar
     

  • 66.

    Jackson, J. M. et al. Single-crystal elasticity and sound velocities of (Mg0.94Fe0.06)O ferropericlase to 20 GPa. J. Geophys. Res. 111, B09203 (2006).


    Google Scholar
     

  • 67.

    Wang, J., Bass, J. D. & Kastura, T. Elastic properties of iron-bearing wadsleyite to 17.7 GPa: Implications for mantle mineral models. Phys. Earth Planet. Inter. 228, 92–96 (2014).


    Google Scholar
     

  • 68.

    Mao, Z. et al. Effect of hydration on the single-crystal elasticity of Fe-bearing wadsleyite to 12 GPa. Am. Mineral. 96, 1606–1612 (2011).


    Google Scholar
     

  • 69.

    Mao, Z. et al. Elasticity of hydrous wadsleyite to 12 GPa: implications for Earth’s transition zone. Geophys. Res. Lett. 35, L21305 (2008).


    Google Scholar
     

  • 70.

    Zha, C.-s. et al. Single-crystal elasticity of beta-Mg2SiO4 to the pressure of the 410 km seismic discontinuity in the Earth’s mantle. Earth Planet. Sci. Lett. 147, E9–E15 (1997).


    Google Scholar
     

  • 71.

    Mao, Z. et al. Sound velocities of hydrous ringwoodite to 16 GPa and 673 K. Earth Planet. Sci. Lett. 331–332, 112–119 (2012).


    Google Scholar
     

  • 72.

    Yang, J. et al. Elasticity of ferropericlase and seismic heterogeneity in the Earth’s lower mantle. J. Geophys. Res. Solid Earth 121, 8488–8500 (2016).


    Google Scholar
     

  • 73.

    Fan, D. et al. Elasticity of single-crystal periclase at high pressure and temperature: the effect of iron on the elasticity and seismic parameters of ferropericlase in the lower mantle. Am. Mineral. 104, 262–275 (2019).


    Google Scholar
     

  • 74.

    Zhang, J. S., Bass, J. D. & Zhu, G. Single-crystal Brillouin spectroscopy with CO2 laser heating and variable q. Rev. Sci. Instrum. 86, 063905 (2015).


    Google Scholar
     

  • 75.

    Kurnosov, A., Marquardt, H., Dubrovinsky, L. & Potapkin, V. A waveguide-based flexible CO2-laser heating system for diamond-anvil cell applications. C. R. Geosci. 351, 280–285 (2019).


    Google Scholar
     

  • 76.

    Sinogeikin, S. V., Lakshtanov, D. L., Nicholas, J. D. & Bass, J. D. Sound velocity measurements on laser-heated MgO and Al2O3. Phys. Earth Planet. Inter. 143–144, 575–586 (2004).


    Google Scholar
     

  • 77.

    Sinogeikin, S. V., Lakshtanov, D. L., Nicholas, J. D., Jackson, J. M. & Bass, J. D. High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating. J. Eur. Ceram. Soc. 25, 1313–1324 (2005).


    Google Scholar
     

  • 78.

    Kriesel, J. M et al. Hollow core fiber optics for mid-wave and long-wave infrared spectroscopy Proc. SPIE https://doi.org/10.1117/12.882840 (2011)

  • 79.

    Marquardt, H. et al. Elastic properties of MgO nanocrystals and grain boundaries at high pressures by Brillouin scattering. Phys. Rev. B 84, 064131 (2011).


    Google Scholar
     

  • 80.

    Marquardt, H., Speziale, S., Jahn, S., Ganschow, S. & Schilling, F. R. Single-crystal elastic properties of (Y,Yb)3Al5O12. J. Appl. Phys. 106, 093519–093515 (2009).


    Google Scholar
     

  • 81.

    Buchen, J. et al. Equation of state of polycrystalline stishovite across the tetragonal-orthorhombic phase transition. J. Geophys. Res. 123, 7347–7360 (2018).


    Google Scholar
     

  • 82.

    Sinogeikin, S. V., Zhang, J. & Bass, J. D. Elasticity of single crystal and polycrystalline MgSiO3 perovskite by Brillouin spectroscopy. Geophys. Res. Lett. 31, L06620 (2004).


    Google Scholar
     

  • 83.

    Murakami, M. et al. Sound velocity of MgSiO3 post-perovskite phase; a constraint on the D′′ discontinuity. Earth Planet. Sci. Lett. 259, 18–23 (2007).


    Google Scholar
     

  • 84.

    Jackson, J. M., Zhang, J., Shu, J., Sinogeikin, S. V. & Bass, J. D. High-pressure sound velocities and elasticity of aluminous MgSiO3 perovskite to 45 GPa: Implications for lateral heterogeneity in Earth’s lower mantle. Geophys. Res. Lett. 32, L21305 (2005).


    Google Scholar
     

  • 85.

    Murakami, M., Sinogeikin, S. V., Hellwig, H., Bass, J. D. & Li, J. Sound velocity of MgSiO3 perovskite to Mbar pressure. Earth Planet. Sci. Lett. 256, 47–54 (2007).


    Google Scholar
     

  • 86.

    Sinogeikin, S. V. & Bass, J. D. Elasticity of majorite and a majorite-pyrope solid solution to high pressure: implications for the transition zone. Geophys. Res. Lett. 29, 1017 (2002).


    Google Scholar
     

  • 87.

    Asahara, Y. et al. Acoustic velocity measurements for stishovite across the post-stishovite phase transition under deviatoric stress: implications for the seismic features of subducting slabs in the mid-mantle. Am. Mineral. 98, 2053–2062 (2013).


    Google Scholar
     

  • 88.

    Kudo, Y. et al. Sound velocity measurements of CaSiO3 perovskite to 133 GPa and implications for lowermost mantle seismic anomalies. Earth Planet. Sci. Lett. 349–350, 1–7 (2012).


    Google Scholar
     

  • 89.

    Abramson, E. H., Brown, J. M. & Slutsky, L. J. Applications of impulsive stimulated scattering in the earth and planetary sciences. Annu. Rev. Phys. Chem. 50, 279–313 (1999).


    Google Scholar
     

  • 90.

    Li, B. & Liebermann, R. C. High-pressure geoscience special feature: indoor seismology by probing the Earth’s interior by using sound velocity measurements at high pressures and temperatures. Proc. Natl Acad. Sci. USA 104, 9145–9150 (2007).


    Google Scholar
     

  • 91.

    Chantel, J., Frost, D. J., McCammon, C. A., Jing, Z. & Wang, Y. Acoustic velocities of pure and iron-bearing magnesium silicate perovskite measured to 25 GPa and 1200 K. Geophys. Res. Lett. 39, L19307 (2012).


    Google Scholar
     

  • 92.

    Li, B., Kung, J. & Liebermann, R. C. Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus. Phys. Earth Planet. Inter. 143, 559–574 (2004).


    Google Scholar
     

  • 93.

    Whitaker, M. L., Baldwin, K. J. & Huebsch, W. R. DIASCoPE: Directly integrated acoustic system combined with pressure experiments – a new method for fast acoustic velocity measurements at high pressure. Rev. Sci. Instrum. 88, 034901 (2017).


    Google Scholar
     

  • 94.

    Chen, G., Liebermann, R. C. & Weidner, D. J. Elasticity of single-crystal MgO to 8 gigapascals and 1600 Kelvin. Science 280, 1913–1916 (1998).


    Google Scholar
     

  • 95.

    Jacobsen, S. D., Smyth, J. R., Spetzler, H., Holl, C. M. & Frost, D. J. Sound velocities and elastic constants of iron-bearing hydrous ringwoodite. Phys. Earth Planet. Inter. 143-144, 47–56 (2004).


    Google Scholar
     

  • 96.

    Cook, R. K. Variation of Elastic constants and static strains with hydrostatic pressure: a method for calculation from ultrasonic measurements. J. Acoust. Soc. Am. 29, 445–449 (1957).


    Google Scholar
     

  • 97.

    Kunimoto, T., Irifune, T., Tange, Y. & Wada, K. Pressure generation to 50 GPa in Kawai-type multianvil apparatus using newly developed tungsten carbide anvils. High Press. Res. 36, 97–104 (2016).


    Google Scholar
     

  • 98.

    Yamazaki, D. et al. High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg,Fe)SiO3. C. R. Geosci. 351, 253–259 (2019).


    Google Scholar
     

  • 99.

    Higo, Y., Irifune, T. & Funakoshi, K. I. Simultaneous high-pressure high-temperature elastic velocity measurement system up to 27 GPa and 1873 K using ultrasonic and synchrotron X-ray techniques. Rev. Sci. Instrum. 89, 014501 (2018).


    Google Scholar
     

  • 100.

    Jing, Z., Yu, T., Xu, M., Chantel, J. & Wang, Y. High-pressure sound velocity measurements of liquids using in situ ultrasonic techniques in a multianvil apparatus. Minerals 10, 126 (2020).


    Google Scholar
     

  • 101.

    Pennicard, D. et al. LAMBDA 2M GaAs — A multi-megapixel hard X-ray detector for synchrotrons. J. Instrum. 13, C01026 (2018).


    Google Scholar
     

  • 102.

    Jenei, Z. et al. New dynamic diamond anvil cells for tera-pascal per second fast compression x-ray diffraction experiments. Rev. Sci. Instrum. 90, 065114 (2019).


    Google Scholar
     

  • 103.

    Mendez, A. S. J. et al. A resistively-heated dynamic diamond anvil cell (RHdDAC) for fast compression x-ray diffraction experiments at high temperatures. Rev. Sci. Instrum. https://doi.org/10.1063/1065.0007557 (2020).

    Article 

    Google Scholar
     

  • 104.

    Sinogeikin, S. et al. Brillouin spectrometer interfaced with synchrotron radiation for simultaneous x-ray density and acoustic velocity measurements. Rev. Sci. Instrum. 77, 103905–103911 (2006).


    Google Scholar
     

  • 105.

    Murakami, M., Asahara, Y., Ohishi, Y., Hirao, N. & Hirose, K. Development of in situ Brillouin spectroscopy at high pressure and high temperature with synchrotron radiation and infrared laser heating system: application to the Earth’s deep interior. Phys. Earth Planet. Inter. 174, 282–291 (2009).


    Google Scholar
     

  • 106.

    Trots, D. M. et al. The Sm:YAG primary fluorescence pressure scale. J. Geophys. Res. Solid Earth 118, 5805–5813 (2013).


    Google Scholar
     

  • 107.

    Matsui, M., Higo, Y., Okamoto, Y., Irifune, T. & Funakoshi, K.-I. Simultaneous sound velocity and density measurements of NaCl at high temperatures and pressures: application as a primary pressure standard. Am. Mineral. 97, 1670–1675 (2012).


    Google Scholar
     

  • 108.

    Gréaux, S. et al. Sound velocities of aluminum-bearing stishovite in the mantle transition zone. Geophys. Res. Lett. 43, 4239–4246 (2016).


    Google Scholar
     

  • 109.

    Irifune, T. et al. Sound velocities of majorite garnet and the composition of the mantle transition region. Nature 451, 814–817 (2008).


    Google Scholar
     

  • 110.

    Liu, W., Kung, J., Li, B. S., Nishiyama, N. & Wang, Y. B. Elasticity of (Mg0.87Fe0.13)2SiO4 wadsleyite to 12 GPa and 1073 K. Phys. Earth Planet. Inter. 174, 98–104 (2009).


    Google Scholar
     

  • 111.

    Isshiki, M. et al. Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427, 60–63 (2004).


    Google Scholar
     

  • 112.

    Nishi, M. et al. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat. Geosci. 7, 224–227 (2014).


    Google Scholar
     

  • 113.

    Fu, S. et al. Melting behavior of the lower-mantle ferropericlase across the spin crossover: Implication for the ultra-low velocity zones at the lowermost mantle. Earth Planet. Sci. Lett. 503, 1–9 (2018).


    Google Scholar
     

  • 114.

    Li, X. et al. Elasticity of single-crystal superhydrous phase B at simultaneous high pressure-temperature conditions. Geophys. Res. Lett. 43, 8458–8465 (2016).


    Google Scholar
     

  • 115.

    Liu, L.-g, Okamoto, K., Yang, Y.-j, Chen, C.-c & Lin, C.-C. Elasticity of single-crystal phase D (a dense hydrous magnesium silicate) by Brillouin spectroscopy. Solid State Commun. 132, 517–520 (2004).


    Google Scholar
     

  • 116.

    Rosa, A. D., Sanchez-Valle, C. & Ghosh, S. Elasticity of phase D and implication for the degree of hydration of deep subducted slabs. Geophys. Res. Lett. 39, L06304 (2012).


    Google Scholar
     

  • 117.

    Satta, N. et al. Single-crystal elasticity of iron-bearing phase E and seismic detection of water in Earth’s upper mantle. Am. Mineral. 104, 1526–1529 (2019).


    Google Scholar
     

  • 118.

    Koelemeijer, P., Ritsema, J., Deuss, A. & van Heijst, H.-J. SP12RTS: a degree-12 model of shear- and compressional-wave velocity for Earth’s mantle. Geophys. J. Int. 204, 1024–1039 (2016).


    Google Scholar
     

  • 119.

    Borgeaud, A. F. E., Kawai, K. & Geller, R. J. Three-dimensional S velocity structure of the mantle transition zone beneath Central America and the Gulf of Mexico inferred using waveform inversion. J. Geophys. Res. Solid Earth 124, 9664–9681 (2019).


    Google Scholar
     

  • 120.

    Deschamps, F., Konishi, K., Fuji, N. & Cobden, L. Radial thermo-chemical structure beneath Western and Northern Pacific from seismic waveform inversion. Earth Planet. Sci. Lett. 520, 153–163 (2019).


    Google Scholar
     

  • 121.

    Zhang, B. L., Ni, S. D. & Chen, Y. L. Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances. Earth Planet. Phys. 3, 537–546 (2019).


    Google Scholar
     

  • 122.

    Liu, C. & Grand, S. P. Seismic attenuation in the African LLSVP estimated from PcS phases. Earth Planet. Sci. Lett. 489, 8–16 (2018).


    Google Scholar
     

  • 123.

    Hwang, Y. K. & Ritsema, J. Radial Qμ structure of the lower mantle from teleseismic body-wave spectra. Earth Planet. Sci. Lett. 303, 369–375 (2011).


    Google Scholar
     

  • 124.

    Li, L. & Weidner, D. J. Effect of phase transitions on compressional-wave velocities in the Earth’s mantle. Nature 454, 984–986 (2008).


    Google Scholar
     

  • 125.

    Faul, U. & Jackson, I. Transient creep and strain energy dissipation: an experimental perspective. Annu. Rev. Earth Planet. Sci. 43, 541–569 (2015).


    Google Scholar
     

  • 126.

    Immoor, J. et al. Evidence for {100}<011> slip in ferropericlase in Earth’s lower mantle from high-pressure/high-temperature experiments. Earth Planet. Sci. Lett. 489, 251–257 (2018).


    Google Scholar
     

  • 127.

    Immoor, J. et al. An improved setup for radial diffraction experiments at high pressures and high temperatures in a resistive graphite-heated diamond anvil cell. Rev. Sci. Instrum. 91, 045121 (2020).


    Google Scholar
     

  • 128.

    Banerdt, W. B. et al. Initial results from the InSight mission on Mars. Nat. Geosci. 13, 183–189 (2020).


    Google Scholar
     

  • 129.

    Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).


    Google Scholar
     

  • 130.

    Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).


    Google Scholar
     

  • 131.

    Sinogeikin, S. V., Bass, J. D. & Katsura, T. Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km seismic discontinuity. Phys. Earth Planet. Inter. 136, 41–66 (2003).


    Google Scholar
     

  • 132.

    Sinogeikin, S. V. & Bass, J. D. Single-crystal elasticity of MgO at high pressure. Phys. Rev. B 59, R14141 (1999).


    Google Scholar
     

  • 133.

    Zha, C.-s, Mao, H.-k & Hemley, R. J. Elasticity of MgO and a primary pressure scale to 55 GPa. Proc. Natl Acad. Sci.USA 97, 13494–13499 (2000).


    Google Scholar
     

  • 134.

    Jiang, F., Gwanmesia, G. D., Dyuzheva, T. I. & Duffy, T. S. Elasticity of stishovite and acoustic mode softening under high pressure by Brillouin scattering. Phys. Earth Planet. Inter. 172, 235–240 (2009).


    Google Scholar
     

  • 135.

    Wu, Y. et al. Elasticity of single-crystal NAL phase at high pressure: a potential source of the seismic anisotropy in the lower mantle. J. Geophys. Res. Solid Earth 121, 5696–5707 (2016).


    Google Scholar
     

  • 136.

    Jacobsen, S. D. & Smyth, J. R. in Earth’s Deep Water Cycle Vol. 168 (eds Jacobsen, S. D. & Van Der Lee, S.) 131–145 (Wiley, 2006).

  • 137.

    Li, B. & Liebermann, R. C. Sound velocities of wadsleyite β-(Mg0.88Fe0.12)2SiO4 to 10 GPa. Am. Mineral. 85, 292–295 (2000).


    Google Scholar
     

  • 138.

    Li, B., Liebermann, R. C. & Weidner, D. J. Elastic moduli of wadsleyite (beta-Mg2SiO4) to 7 gigapascals and 873 Kelvin. Science 281, 675–677 (1998).


    Google Scholar
     

  • 139.

    Liu, W., Kung, J., Li, B., Nishiyama, N. & Wang, Y. Elasticity of (Mg0.87Fe0.13)2SiO4 wadsleyite to 12 GPa and 1073 K. Phys. Earth Planet. Inter. 174, 98–104 (2009).


    Google Scholar
     

  • 140.

    Higo, Y., Inoue, T., Li, B., Irifune, T. & Liebermann, R. C. The effect of iron on the elastic properties of ringwoodite at high pressure. Phys. Earth Planet. Inter. 159, 276–285 (2006).


    Google Scholar
     

  • 141.

    Gwanmesia, G. D., Wang, L., Triplett, R. & Liebermann, R. C. Pressure and temperature dependence of the elasticity of pyrope–majorite [Py60Mj40 and Py50Mj50] garnets solid solution measured by ultrasonic interferometry technique. Phys. Earth Planet. Inter. 174, 105–112 (2009).


    Google Scholar
     

  • 142.

    Liu, J., Chen, G., Gwanmesia, G. D. & Liebermann, R. C. Elastic wave velocities of pyrope–majorite garnets (Py62Mj38 and Py50Mj50) to 9 GPa. Phys. Earth Planet. Inter. 120, 153–163 (2000).


    Google Scholar
     

  • 143.

    Li, B. & Zhang, J. Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle. Phys. Earth Planet. Inter. 151, 143–154 (2005).


    Google Scholar
     

  • 144.

    Sinelnikov, Y. D., Chen, G., Neuville, D. R., Vaughan, M. T. & Liebermann, R. C. Ultrasonic shear wave velocities of MgSiO3 perovskite at 8 GPa and 800 K and lower mantle composition. Science 281, 677–679 (1998).


    Google Scholar
     

  • 145.

    Kung, J., Li, B., Weidner, D. J., Zhang, J. & Liebermann, R. C. Elasticity of (Mg0.83Fe0.17)O ferropericlase at high pressure: ultrasonic measurements in conjunction with X-radiation techniques. Earth Planet. Sci. Lett. 203, 557–566 (2002).


    Google Scholar
     

  • 146.

    Zhou, C., Gréaux, S., Nishiyama, N., Irifune, T. & Higo, Y. Sound velocities measurement on MgSiO3 akimotoite at high pressures and high temperatures with simultaneous in situ X-ray diffraction and ultrasonic study. Phys. Earth Planet. Inter. 228, 97–105 (2014).


    Google Scholar
     

  • 147.

    Koelemeijer, P., Schuberth, B. S. A., Davies, D. R., Deuss, A. & Ritsema, J. Constraints on the presence of post-perovskite in Earth’s lowermost mantle from tomographic-geodynamic model comparisons. Earth Planet. Sci. Lett. 494, 226–238 (2018).


    Google Scholar
     

  • 148.

    Wu, Y. et al. Spin transition of ferric iron in the NAL phase: Implications for the seismic heterogeneities of subducted slabs in the lower mantle. Earth Planet. Sci. Lett. 434, 91–100 (2016).


    Google Scholar
     

  • 149.

    Vinnik, L. P., Oreshin, S. I., Speziale, S. & Weber, M. Mid-mantle layering from SKS receiver functions. Geophys. Res. Lett. 37, L24302 (2010).


    Google Scholar
     

  • 150.

    Jenkins, J., Deuss, A. & Cottaar, S. Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe. Earth Planet. Sci. Lett. 459, 196–207 (2017).


    Google Scholar
     

  • 151.

    Lakshtanov, D. L. et al. The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the earth. Proc. Natl Acad. Sci. USA 104, 13588–13590 (2007).


    Google Scholar
     

  • 152.

    Komabayashi, T., Hirose, K., Sata, N., Ohishi, Y. & Dubrovinsky, L. S. Phase transition in CaSiO3 perovskite. Earth Planet. Sci. Lett. 260, 564–569 (2007).


    Google Scholar
     

  • 153.

    Kurashina, T., Hirose, K., Ono, S., Sata, N. & Ohishi, Y. Phase transition in Al-bearing CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle. Phys. Earth Planet. Inter. 145, 67–74 (2004).


    Google Scholar
     

  • 154.

    Wu, Z. & Wentzcovitch, R. M. Composition versus temperature induced velocity heterogeneities in a pyrolitic lower mantle. Earth Planet. Sci. Lett. 457, 359–365 (2017).


    Google Scholar
     

  • 155.

    Cammarano, F., Marquardt, H., Speziale, S. & Tackley, P. J. Role of iron-spin transition in ferropericlase on seismic interpretation: a broad thermochemical transition in the mid mantle? Geophys. Res. Lett. 37, L03308 (2010).


    Google Scholar
     

  • 156.

    Catalli, K. et al. Effects of the Fe3+ spin transition on the properties of aluminous perovskite—New insights for lower-mantle seismic heterogeneities. Earth Planet. Sci. Lett. 310, 293–302 (2011).


    Google Scholar
     

  • 157.

    Shim, S.-H. et al. Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions. Proc. Natl Acad. Sci. USA 114, 6468–6473 (2017).


    Google Scholar
     

  • 158.

    Glazyrin, K. et al. Magnesium silicate perovskite and effect of iron oxidation state on its bulk sound velocity at the conditions of the lower mantle. Earth Planet. Sci. Lett. 393, 182–186 (2014).


    Google Scholar
     

  • 159.

    Fujino, K. et al. Spin transition of ferric iron in Al-bearing Mg–perovskite up to 200 GPa and its implication for the lower mantle. Earth Planet. Sci. Lett. 317–318, 407–412 (2012).


    Google Scholar
     

  • 160.

    Iitaka, T., Hirose, K., Kawamura, K. & Murakami, M. The elasticity of the MgSiO3 post-perovskite phase in the Earth’s lowermost mantle. Nature 430, 442–445 (2004).


    Google Scholar
     

  • 161.

    Miyagi, L., Kanitpanyacharoen, W., Kaercher, P., Lee, K. K. M. & Wenk, H.-R. Slip systems in MgSiO3 post-perovskite: implications for D′′ anisotropy. Science 329, 1639–1641 (2010).


    Google Scholar
     

  • 162.

    Harte, B. Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral. Mag. 74, 189–215 (2010).


    Google Scholar
     

  • 163.

    Irifune, T. & Tsuchiya, T. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 33–60 (Elsevier, 2015).

  • 164.

    Liu, Z. et al. Elastic wave velocity of polycrystalline Mj80Py20 garnet to 21 GPa and 2,000 K. Phys. Chem. Miner. 42, 213–222 (2015).


    Google Scholar
     

  • 165.

    Nye, J. F. Physical Properties of Crystals (Clarendon, 1985).

  • 166.

    Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond. A 65, 349–354 (1952).


    Google Scholar
     

  • 167.

    Watt, J. P., Davies, G. F. & O’Connell, R. J. The elastic properties of composite materials. Rev. Geophys. 14, 541–563 (1976).


    Google Scholar
     

  • [ad_2]

    Source link

    10 thoughts on “Experimental elasticity of Earth’s deep mantle”
    1. Valuable information. Lucky me I found your web site by accident, and I’m shocked why this accident didn’t happened earlier! I bookmarked it.

    2. What I have continually told people today is that when you are evaluating a good internet electronics retail store, there are a few variables that you have to think about. First and foremost, you would like to make sure to discover a reputable plus reliable store that has gotten great evaluations and classification from other customers and business world experts. This will make certain you are handling a well-known store to provide good support and support to the patrons. Thank you for sharing your thinking on this site.

    3. Wow! This could be one particular of the most beneficial blogs We have ever arrive across on this subject. Actually Magnificent. I’m also a specialist in this topic so I can understand your hard work.

    4. I believe that avoiding ready-made foods could be the first step to lose weight. They could taste good, but packaged foods include very little vitamins and minerals, making you try to eat more in order to have enough power to get with the day. When you are constantly having these foods, converting to whole grain products and other complex carbohydrates will help you have more vitality while consuming less. Good blog post.

    5. Thanks for your post on the vacation industry. I would also like to add that if you are one senior contemplating traveling, it truly is absolutely crucial that you buy travel cover for older persons. When traveling, elderly people are at greatest risk of getting a healthcare emergency. Receiving the right insurance plan package in your age group can safeguard your health and provide peace of mind.

    6. Very nice post and right to the point. I am not sure if this is truly the best place to ask but do you guys have any ideea where to employ some professional writers? Thanks in advance 🙂

    7. I抳e learn some good stuff here. Definitely price bookmarking for revisiting. I wonder how so much effort you set to make this type of magnificent informative website.

    8. By my examination, shopping for electronic devices online can for sure be expensive, but there are some tips that you can use to help you get the best offers. There are continually ways to find discount specials that could make one to have the best gadgets products at the cheapest prices. Thanks for your blog post.

    9. It¦s really a nice and helpful piece of info. I am happy that you shared this useful information with us. Please keep us up to date like this. Thank you for sharing.

    Leave a Reply

    Your email address will not be published. Required fields are marked *