CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Summary for Policymakers. In Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  • 2.

    Strefler, J. et al. Between Scylla and Charybdis: delayed mitigation narrows the passage between large-scale CDR and high costs. Environ. Res. Lett. 13, 044015 (2018).

    Article 

    Google Scholar
     

  • 3.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

  • 4.

    Summary for Policymakers. In Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).

  • 5.

    Nemet, G. F. et al. Negative emissions—part 3: innovation and upscaling. Environ. Res. Lett. 13, 063003 (2018).

    Article 

    Google Scholar
     

  • 6.

    Ringius, L., Torvanger, A. & Underdal, A. Burden sharing and fairness principles in international climate policy. Int. Environ. Agreem. 2, 1–22 (2002).

    Article 

    Google Scholar
     

  • 7.

    Lawrence, P. & Reder, M. Equity and the Paris Agreement: legal and philosophical perspectives. J. Environ. Law 31, 511–531 (2019).

    Article 

    Google Scholar
     

  • 8.

    Schleussner, C.-F. et al. 1.5 °C hotspots: climate hazards, vulnerabilities, and impacts. Annu. Rev. Environ. Resour. 43, 135–163 (2018).

    Article 

    Google Scholar
     

  • 9.

    Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Emmerling, J. et al. The role of the discount rate for emission pathways and negative emissions. Environ. Res. Lett. 14, 104008 (2019).

  • 11.

    Geiges, A. et al. Incremental improvements of 2030 targets insufficient to achieve the Paris Agreement goals. Earth Syst. Dynam. (in the press).

  • 12.

    Klinsky, S. et al. Why equity is fundamental in climate change policy research. Glob. Environ. Change 44, 170–173 (2017).

    Article 

    Google Scholar
     

  • 13.

    Höhne, N., den Elzen, M. & Escalante, D. Regional GHG reduction targets based on effort sharing: a comparison of studies. Clim. Policy 14, 122–147 (2014).

    Article 

    Google Scholar
     

  • 14.

    Robiou Du Pont, Y. et al. Equitable mitigation to achieve the Paris Agreement goals. Nat. Clim. Change 7, 38–43 (2017).

    Article 

    Google Scholar
     

  • 15.

    Kartha, S., Baer, P., Athanasiou, T. & Kemp-Benedict, E. The Greenhouse Development Rights framework. Clim. Dev. 1, 147–165 (2009).

  • 16.

    Winkler, H., Letete, T. & Marquard, A. Equitable access to sustainable development: operationalizing key criteria. Clim. Policy 13, 411–432 (2013).

    Article 

    Google Scholar
     

  • 17.

    Pan, X., Elzen, M., den, Höhne, N., Teng, F. & Wang, L. Exploring fair and ambitious mitigation contributions under the Paris Agreement goals. Environ. Sci. Policy 74, 49–56 (2017).

    Article 

    Google Scholar
     

  • 18.

    den Elzen, M. G. J., Höhne, N., Brouns, B., Winkler, H. & Ott, H. E. Differentiation of countries’ future commitments in a post-2012 climate regime. Environ. Sci. Policy 10, 185–203 (2007).

    Article 

    Google Scholar
     

  • 19.

    Raupach, M. R. et al. Sharing a quota on cumulative carbon emissions. Nat. Clim. Change 4, 873–879 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    van den Berg, N. J. et al. Implications of various effort-sharing approaches for national carbon budgets and emission pathways. Climatic Change https://doi.org/10.1007/s10584-019-02368-y (2019).

  • 21.

    Fleurbaey, M. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 283–350 (Cambridge Univ. Press, 2014).

  • 22.

    Winkler, H. et al. Equitable Access to Sustainable Development: Contribution to the Body of Scientific Knowledge (BASIC expert group, 2011).

  • 23.

    McMullin, B., Price, P., Jones, M. B. & McGeever, A. H. Assessing negative carbon dioxide emissions from the perspective of a national “fair share” of the remaining global carbon budget. Mitig. Adapt. Strateg. Glob. Change https://doi.org/10.1007/s11027-019-09881-6 (2019).

  • 24.

    Gignac, R. & Matthews, H. D. Allocating a 2 °C cumulative carbon budget to countries. Environ. Res. Lett. 10, 075004 (2015).

    Article 

    Google Scholar
     

  • 25.

    Peters, G. P. & Geden, O. Catalysing a political shift from low to negative carbon. Nat. Clim. Change 7, 619–621 (2017).

  • 26.

    Mace, M. J., Fyson, C. L., Schaeffer, M. & Hare, W. L. Governing Large-Scale Carbon Dioxide Removal: Are We Ready? (Carnegie Climate Governance Initiative, 2018).

  • 27.

    Köberle, A. C. The value of BECCS in IAMs: a review. Curr. Sustain. Renew. Energy Rep. 6, 107–115 (2019).


    Google Scholar
     

  • 28.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (Cambridge Univ. Press, 2014).

  • 29.

    Jacoby, H. D., Schmalensee, R., Wing, I. S. & Prinn, R. G. Toward a Useful Architecture for Climate Change Negotiations Joint Program Report Series Report 49 (MIT Joint Program on the Science and Policy of Global Change, 1999).

  • 30.

    Den Elzen, M. G. J. & Lucas, P. L. The FAIR model: a tool to analyse environmental and costs implications of regimes of future commitments. Environ. Model. Assess. 10, 115–134 (2005).

    Article 

    Google Scholar
     

  • 31.

    Baer, P., Fieldman, G., Athanasiou, T. & Kartha, S. Greenhouse Development Rights: towards an equitable framework for global climate policy. Camb. Rev. Int. Aff. 21, 649–669 (2008).

    Article 

    Google Scholar
     

  • 32.

    Rao, N. D., Sauer, P., Gidden, M. & Riahi, K. Income inequality projections for the Shared Socioeconomic Pathways (SSPs). Futures 105, 27–39 (2019).

    Article 

    Google Scholar
     

  • 33.

    Kartha, S. et al. Cascading biases against poorer countries. Nat. Clim. Change 8, 348–349 (2018).

    Article 

    Google Scholar
     

  • 34.

    Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6, 827–835 (2016).

  • 35.

    Huppmann, D. et al. IAMC 1.5 °C scenario explorer and data hosted by IIASA. Zenodo https://doi.org/10.5281/zenodo.3363345 (2019).

  • 36.

    Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V., et al.) Ch. 2 (WMO, 2018).

  • 37.

    Tokarska, K. B., Zickfeld, K. & Rogelj, J. Path independence of carbon budgets when meeting a stringent global mean temperature target after an overshoot. Earths Future 7, 1283–1295 (2019).

    Article 

    Google Scholar
     

  • 38.

    Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

    Article 

    Google Scholar
     

  • 39.

    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar
     

  • 40.

    Nauels, A. et al. ZERO IN on the Remaining Carbon Budget and Decadal Warming Rates. The CONSTRAIN Project Annual Report 2019 (CONSTRAIN, 2019).

  • 41.

    Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 2018, 626–633 (2018).

    Article 

    Google Scholar
     

  • 42.

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Climate Action Tracker Country Assessments September 2019 (Climate Action Tracker, 2019).

  • 44.

    Winkler, H. et al. Countries start to explain how their climate contributions are fair: more rigour needed. Int. Environ. Agreem. 18, 99–115 (2018).

    Article 

    Google Scholar
     

  • 45.

    Meinshausen, M. et al. National post-2020 greenhouse gas targets and diversity-aware leadership. Nat. Clim. Change 5, 1098–1106 (2015).

  • 46.

    Shue, H. Responsible for what? Carbon producer CO2 contributions and the energy transition. Climatic Change 144, 591–596 (2017).

    Article 

    Google Scholar
     

  • 47.

    Frumhoff, P. C., Heede, R. & Oreskes, N. The climate responsibilities of industrial carbon producers. Climatic Change 132, 157–171 (2015).

    Article 

    Google Scholar
     

  • 48.

    Bednar, J., Obersteiner, M. & Wagner, F. On the financial viability of negative emissions. Nat. Commun. 10, 1783 (2019).

    Article 

    Google Scholar
     

  • 49.

    Minx, J. C. et al. Negative emissions—part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).

    Article 

    Google Scholar
     

  • 50.

    Hansson, A. et al. Preconditions for bioenergy with carbon capture and storage (BECCS) in sub-Saharan Africa: the case of Tanzania. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-019-00517-y (2019).

  • 51.

    Wohland, J., Witthaut, D. & Schleussner, C.-F. Negative emission potential of direct air capture powered by renewable excess electricity in Europe. Earths Future 6, 1380–1384 (2018).

    Article 

    Google Scholar
     

  • 52.

    Schneider, L. et al. Double counting and the Paris Agreement rulebook. Science 366, 180–183 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 53.

    Baur, S., Fyson, C. & Schleussner, C.-F. CDR Equity Analysis Version 1.0.0. Zenodo https://doi.org/10.5281/zenodo.3904162 (2020).

  • 54.

    Gütschow, J., Jeffery, L., Gieseke, R. & Günther, A. The PRIMAP-hist National Historical Emissions Time Series (1850–2017) Version 2.1 (GFZ Data Services, 2019); https://doi.org/10.5880/PIK.2019.018

  • 55.

    FAOSTAT—Emissions—Land Use (FAO, 2019); http://www.fao.org/faostat/en/#data/GL

  • 56.

    World Development Indicators (World Bank, 2019); https://databank.worldbank.org/data/reports.aspx?source=world-development-indicators

  • 57.

    Kriegler, E. et al. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob. Environ. Change 42, 297–315 (2017).

    Article 

    Google Scholar
     

  • 58.

    Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 59.

    van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

    Article 

    Google Scholar
     

  • 60.

    Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *