CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Salthouse, T. A. Selective review of cognitive aging. J. Int. Neuropsychol. Soc. 16, 754–760 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Zanto, T. & Gazzaley, A. Attention and ageing. In Oxford Library of Psychology. The Oxford Handbook of Attention (eds Nobre, A. C. & Kastner, S.) 927–971 (Oxford University Press, Oxford, 2014).


    Google Scholar
     

  • 3.

    Burke, D. M. & Graham, E. R. The neural basis for aging effects on language. In The Handbook of the Neuropsychology of Language 778–800 (Wiley-Blackwell, 2012). https://doi.org/10.1002/9781118432501.ch38.

  • 4.

    Hasher, L. & Zacks, R. T. Working memory, comprehension, and aging: A review and a new view. Psychol. Learn. Motiv. Adv. Res. Theory 22, 193–225 (1988).


    Google Scholar
     

  • 5.

    Tulving, E. Episodic and semantic memory. In Organization of Memory (eds Tulving, E. & Donaldson, W.) (Academic Press, New York, 1972).


    Google Scholar
     

  • 6.

    Arias-Trejo, N. & Plunkett, K. What’s in a link: Associative and taxonomic priming effects in the infant lexicon. Cognition 128, 214–227 (2013).

    PubMed 

    Google Scholar
     

  • 7.

    Arias-Trejo, N. & Plunkett, K. Lexical-semantic priming effects during infancy. Philos. Trans. R. Soc. B Biol. Sci. 364, 3633–3647 (2009).


    Google Scholar
     

  • 8.

    Styles, S. J. & Plunkett, K. How do infants build a semantic system?. Lang. Cogn. 1, 1–24 (2009).


    Google Scholar
     

  • 9.

    Torkildsen, J. K., Syversen, G., Simonsen, H. G., Moen, I. & Lindgren, M. Brain responses to lexical-semantic priming in children at-risk for dyslexia. Brain Lang. 102, 243–261 (2007).

    PubMed 

    Google Scholar
     

  • 10.

    Willits, J. A., Wojcik, E. H., Seidenberg, M. S. & Saffran, J. R. Toddlers activate lexical semantic knowledge in the absence of visual referents: Evidence from auditory priming. Infancy 18, 1053–1075 (2013).


    Google Scholar
     

  • 11.

    Rämä, P., Sirri, L. & Serres, J. Development of lexical-semantic language system: N400 priming effect for spoken words in 18- and 24-month old children. Brain Lang. 125, 1–10 (2013).

    PubMed 

    Google Scholar
     

  • 12.

    Sirri, L. & Rämä, P. Cognitive and neural mechanisms underlying semantic priming during language acquisition. J. Neuroling. 35, 1–12 (2015).


    Google Scholar
     

  • 13.

    Burke, D. M., White, H. & Diaz, D. L. Semantic priming in young and older adults: Evidence for age constancy in automatic and attentional processes. J. Exp. Psychol. Hum. Percept. Perform. 13, 79–88 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Chiarello, C., Chur, K. L. & Hoyer, W. J. Automatic and controlled semantic priming: Accuracy, response bias, and aging. J. Gerontol. 40, 593–600 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Laver, G. D. & Burke, D. M. Why do semantic priming effects increase in old age?. A meta-analysis. Psychol. Aging 8, 34–43 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Laver, G. D. Adult aging effects on semantic and episodic priming in word recognition. Psychol. Aging 24, 28–39 (2009).

    PubMed 

    Google Scholar
     

  • 17.

    White, K. K. & Abrams, L. Phonologically mediated priming of preexisting and new associations in young and older adults. J. Exp. Psychol. Learn. Mem. Cogn. 30, 645–655 (2004).

    PubMed 

    Google Scholar
     

  • 18.

    Bennett, D. J. & McEvoy, C. L. Mediated priming in younger and older adults. Exp. Aging Res. 25, 141–159 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Burke, D. M. & Peters, L. Word associations in old age: Evidence for consistency in semantic encoding during adulthood. Psychol. Aging 1, 283–292 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Au, R. et al. Naming ability across the adult life span. Aging Neuropsychol. Cogn. 2, 300–311 (1995).


    Google Scholar
     

  • 21.

    Bowles, N. L. & Poon, L. W. Aging and retrieval of words in semantic memory. J. Gerontol. 40, 71–77 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Nicholas, M., Obler, L., Albert, M. & Goodglass, H. Lexical retrieval in healthy aging. Cortex 21, 595–606 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Burke, D. M., MacKay, D. G., Worthley, J. S. & Wade, E. On the tip of the tongue: What causes word finding failures in young and older adults?. J. Mem. Lang. 30, 542–579 (1991).


    Google Scholar
     

  • 24.

    Burke, D. M., MacKay, D. G. & James, L. E. Theoretical approaches to language and aging. In Debates in Psychology. Models of Cognitive Aging (eds Perfect, T. & Maylor, E.) 204–237 (Oxford University Press, Oxford, 2000).


    Google Scholar
     

  • 25.

    Mayr, U. & Kliegl, R. Complex semantic processing in old age: Does it stay or does it go?. Psychol. Aging 15, 29–43 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Stothart, G., Quadflieg, S. & Milton, A. A fast and implicit measure of semantic categorisation using steady state visual evoked potentials. Neuropsychologia 102, 11–18 (2017).

    PubMed 

    Google Scholar
     

  • 27.

    Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R. & Rossion, B. The steady-state visual evoked potential in vision research: A review. J. Vis. 15, 1–46 (2015).


    Google Scholar
     

  • 28.

    Grill-Spector, K. & Kanwisher, N. Visual recognition: As soon as you know it is there, you know what it is. Psychol. Sci. 16, 152–160 (2005).

    PubMed 

    Google Scholar
     

  • 29.

    Greene, M. R. & Fei-Fei, L. Visual categorization is automatic and obligatory: Evidence from Stroop-like paradigm. J. Vis. 14(1), 14 (2014).

    PubMed 

    Google Scholar
     

  • 30.

    Serre, T., Oliva, A. & Poggio, T. A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. USA 104, 6424–6429 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Kveraga, K., Ghuman, A. S. & Bar, M. Top-down predictions in the cognitive brain. Brain Cogn. 65, 145–168 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Mervis, C. B. & Rosch, E. Categorization of Natural Objects. Annu. Rev. Psychol. 32, 89–115 (1981).


    Google Scholar
     

  • 33.

    Fodor, J. A. The Modularity of Mind (MIT Press, Cambridge, 1983).


    Google Scholar
     

  • 34.

    Pylyshyn, Z. W. Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behav. Brain Sci. 22, 341–365 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science (80-). 291, 312–316 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Riesenhuber, M. & Poggio, T. Models of object recognition. Nat. Neurosci. 3, 1199–1204 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Liu-Shuang, J., Norcia, A. M. & Rossion, B. An objective index of individual face discrimination in the right occipito-temporal cortex by means of fast periodic oddball stimulation. Neuropsychologia 52, 57–72 (2014).

    PubMed 

    Google Scholar
     

  • 38.

    Pazo-Alvarez, P., Cadaveira, F. & Amenedo, E. MMN in the visual modality: A review. Biol. Psychol. 63, 199–236 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Näätänen, R., Paavilainen, P., Rinne, T. & Alho, K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin. Neurophysiol. 118, 2544–2590 (2007).

    PubMed 

    Google Scholar
     

  • 40.

    Stothart, G., Tales, A. & Kazanina, N. Evoked potentials reveal age-related compensatory mechanisms in early visual processing. Neurobiol. Aging 34, 1302–1308 (2013).

    PubMed 

    Google Scholar
     

  • 41.

    Kremláček, J. et al. Visual mismatch negativity (vMMN): A review and meta-analysis of studies in psychiatric and neurological disorders. Cortex 80, 76–112 (2016).

    PubMed 

    Google Scholar
     

  • 42.

    Gazzaley, A. et al. Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proc. Natl. Acad. Sci. USA 105, 13122–13126 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Stothart, G. & Kazanina, N. Auditory perception in the aging brain: The role of inhibition and facilitation in early processing. Neurobiol. Aging 47, 23–34 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Nasreddine, Z. S. et al. The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699 (2005).

    PubMed 

    Google Scholar
     

  • 45.

    Moreno-Martínez, F. J. & Montoro, P. R. An ecological alternative to Snodgrass & Vanderwart: 360 high quality colour images with norms for seven psycholinguistic variables. PLoS ONE 7, e37527 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Rice, G. E., Watson, D. M., Hartley, T. & Andrews, T. J. Low-level image properties of visual objects predict patterns of neural response across category-selective regions of the ventral visual pathway. J. Neurosci. 34, 8837–8844 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Coggan, D. D. et al. A data-driven approach to stimulus selection reveals an image-based representation of objects in high-level visual areas. Hum. Brain Mapp. 40, 4716–4731 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Oliva, A. & Torralba, A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 42, 145–175 (2001).

    MATH 

    Google Scholar
     

  • 49.

    Gevins, A. & Cutillo, B. Spatiotemporal dynamics of component processes in human working memory. Electroencephalogr. Clin. Neurophysiol. 87, 128–143 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Peirce, J. W. PsychoPy-psychophysics software in python. J. Neurosci. Methods 162, 8–13 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Alp, N., Kogo, N., Van Belle, G., Wagemans, J. & Rossion, B. Frequency tagging yields an objective neural signature of Gestalt formation. Brain Cogn. 104, 15–24 (2016).

    PubMed 

    Google Scholar
     

  • 53.

    Srinivasan, R., Russell, D. P., Edelman, G. M. & Tononi, G. Increased synchronization of neuromagnetic responses during conscious perception. J. Neurosci. 19, 5435–5448 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *