CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24, PA4216, https://doi.org/10.1029/2008PA001683 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Cramwinckel, M. J. et al. Synchronous tropical and polar temperature evolution in the Eocene. Nature 559, 382–386 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Salamy, K. A. & Zachos, J. C. Latest Eocene–Early Oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data. Palaeogeogr. Palaeoclimatol. Palaeoecol 145, 61–77 (1999).


    Google Scholar
     

  • 5.

    Coxall, H. K. & Wilson, P. A. Early Oligocene glaciation and productivity in the eastern equatorial Pacific: Insights into global carbon cycling. Paleoceanography 26, PA2221, https://doi.org/10.1029/2010PA002021 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Doyle, P. S. & Riedel, W. R. Cenozoic and Late Cretaceous ichthyoliths in Plankton Stratigraphy (eds. Bolli, H. M., Saunders, J. B. & Perch-Nielsen, K.) 965–995 (Cambridge Univ. Press, 1985).

  • 7.

    Sibert, E. C., Hull, P. M. & Norris, R. D. Resilience of Pacific pelagic fish across the Cretaceous/Palaeogene mass extinction. Nat. Geosci. 7, 667–670 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Sibert, E., Norris, R., Cuevas, J. & Graves, L. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change. Proc. R. Soc. B 283, 20160189, https://doi.org/10.1098/rspb.2016.0189 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Takaya, Y. et al. The tremendous potential of deep-sea mud as a source of rare-earth elements. Sci. Rep. 8, 5763, https://doi.org/10.1038/s41598-018-23948-5 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Yasukawa, K. et al. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean. J. Asian Earth Sci. 93, 25–36 (2014).

    ADS 

    Google Scholar
     

  • 11.

    Kato, Y. et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat. Geosci. 4, 535–539 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Iijima, K. et al. Discovery of extremely REY-rich mud in the western North Pacific Ocean. Geochem. J. 50, 557–573 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Ohta, J. et al. Geochemical factors responsible for REY-rich mud in the western North Pacific Ocean: Implications from mineralogy and grain size distributions. Geochem. J. 50, 591–603 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Peucker-Ehrenbrink, B. & Ravizza, G. Osmium isotope stratigraphy in The Geologic Time Scale 2012 (eds. Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 145–166 (Elsevier, 2012).

  • 15.

    Peucker-Ehrenbrink, B. & Ravizza, G. The marine osmium isotope record. Terra Nova 12, 205–219 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Nielsen, S. G. et al. Thallium isotope evidence for a permanent increase in marine organic carbon export in the early Eocene. Earth Planet. Sci. Lett. 278, 297–307 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Nishimura, A. & Saito, Y. Deep-sea sediments in the Penrhyn Basin, South Pacific (GH83-3 area) in Geological Survey of Japan Cruise Report Vol. 23 (ed. Usui, A.) 41–60 (Geological Survey of Japan, 1994).

  • 18.

    Menard, H. W. et al. Site 596: Hydraulic piston coring in an area of low surface productivity in the Southwest Pacific. Init. Repts. DSDP 91, 245–267 (1986).


    Google Scholar
     

  • 19.

    Doyle, P. S. & Riedel, W. R. Cretaceous to Neogene ichthyoliths in a giant piston core from the central North Pacific. Micropaleontology 25, 337–364 (1979).


    Google Scholar
     

  • 20.

    Doyle, P. S. & Riedel, W. R. Ichthyolith biostratigraphy of western North Pacific pelagic clays, Deep Sea Drilling Project Leg 86. Init. Repts. DSDP 86, 349–366 (1985).


    Google Scholar
     

  • 21.

    Kyte, F. T., Leinen, M., Heath, G. R. & Zhou, L. Cenozoic sedimentation history of the central North Pacific: Inferences from the elemental geochemistry of core LL44-GPC3. Geochim. Cosmochim. Acta 57, 1719–1740 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Heath, G. R. et al. Site 576. Init. Repts. DSDP 86, 51–90 (1985).


    Google Scholar
     

  • 23.

    Pegram, W. J. & Turekian, K. K. The osmium isotopic composition change of Cenozoic sea water as inferred from a deep-sea core corrected for meteoritic contributions. Geochim. Cosmochim. Acta 63, 4053–4058 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Zhou, L. & Kyte, F. T. Sedimentation history of the South Pacific pelagic clay province over the last 85 million years inferred from the geochemistry of Deep Sea Drilling Project Hole 596. Paleoceanography 7, 441–465 (1992).

    ADS 

    Google Scholar
     

  • 25.

    Borrelli, C. & Katz, M. E. Dynamic deep-water circulation in the northwestern Pacific during the Eocene: Evidence from Ocean Drilling Program Site 884 benthic foraminiferal stable isotopes (δ
    18O and δ
    13C). Geosphere 11, 1204–1225 (2015).

    ADS 

    Google Scholar
     

  • 26.

    DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245–249 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Katz, M. E. et al. Impact of Antarctic Circumpolar Current development on late Paleogene ocean structure. Science 332, 1076–1079 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Katz, M. E. et al. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nat. Geosci. 1, 329–334 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Cramer, B. S., Miller, K. G., Barrett, P. J. & Wright, J. D. Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ
    18O and Mg/Ca) with sea level history. J. Geophys. Res. 116, C12023, https://doi.org/10.1029/2011JC007255 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Rogers, A. D. The biology of seamounts. Adv. Mar. Biol. 30, 305–350 (1994).


    Google Scholar
     

  • 32.

    Moore, T. C. et al. Paleogene tropical Pacific: Clues to circulation, productivity, and plate motion. Paleoceanogaphy 19, PA3013, https://doi.org/10.1029/2003PA000998 (2004).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Lyle, M. et al. Pacific Ocean and Cenozoic evolution of climate. Rev. Geophys. 46, RG2002, https://doi.org/10.1029/2005RG000190 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Goldner, A., Herold, N. & Huber, M. Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition. Nature 511, 574–577 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Hein, J. R. et al. Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific seamount deposits. Paleoceanography 8, 293–311 (1993).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 36.

    Rogers, A. D. The biology of seamounts: 25 Years on. Adv. Mar. Biol 79, 137–224 (2018).

    PubMed 

    Google Scholar
     

  • 37.

    McCave, I. N., Manighetti, B. & Robinson, S. G. Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 10, 593–610 (1995).

    ADS 

    Google Scholar
     

  • 38.

    Hyeong, K., Kim, J., Yoo, C. M., Moon, J.-W. & Seo, I. Cenozoic history of phosphogenesis recorded in the ferromanganese crusts of central and western Pacific seamounts: Implications for deepwater circulation and phosphorus budgets. Palaeogeogr. Palaeoclimatol. Palaeoecol 392, 293–301 (2013).


    Google Scholar
     

  • 39.

    Fujinaga, K. et al. Geochemistry of REY-rich mud in the Japanese Exclusive Economic Zone around Minamitorishima Island. Geochem. J. 50, 575–590 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Mazzullo, J. & Graham, A. G. Handbook for shipboard Sedimentologists. Ocean Drilling Program Technical Note 8, 1–67 (1988).


    Google Scholar
     

  • 41.

    Yeats, R. S. et al. Site 319. Init. Repts. DSDP 34, 19–80 (1976).


    Google Scholar
     

  • 42.

    Winfrey, E. C., Doyle, P. S. & Riedel, W. R. Preliminary ichthyolith stratigraphy, Southwest Pacific, Deep Sea Drilling Project Leg 91. Init. Repts. DSDP 91, 447–468 (1987).


    Google Scholar
     

  • 43.

    Doyle, P. S. & Riedel, W. R. Ichthyoliths: present status of taxonomy and stratigraphy of microscopic fish skeletal debris. Scripps Institution of Oceanography Reference Series, 79–16 (1979).

  • 44.

    Kozarek, R. J. & Orr, W. N. Ichthyoliths, Deep Sea Drilling Project Legs 51 through 53. Init. Repts. DSDP 51, 857–895 (1979). 52, 53.


    Google Scholar
     

  • 45.

    Gottfried, M. D., Doyle, P. S. & Riedel, W. R. Advances in ichthyolith stratigraphy of the Pacific Neogene and Oligocene. Micropaleontology 30, 71–85 (1984).


    Google Scholar
     

  • 46.

    Tway, L. E., Doyle, P. S. & Riedel, W. R. Correlation of dated and undated Pacific samples based on ichthyoliths and clustering techniques. Micropaleontology 31, 295–319 (1985).


    Google Scholar
     

  • 47.

    Nozaki, T., Suzuki, K., Ravizza, G., Kimura, J.-I. & Chang, Q. A method for rapid determination of Re and Os isotope compositions using ID-MC-ICP-MS combined with the sparging method. Geostand. Geoanal. Res. 36, 131–148 (2012).

    CAS 

    Google Scholar
     

  • 48.

    Kimura, J.-I., Nozaki, T., Senda, R. & Suzuki, K. Precise determination of Os isotope ratios in the 15–4000 pg range using a sparging method using enhanced-sensitivity multiple Faraday collector-inductively coupled plasma-mass spectrometry. J. Anal. Atom. Spectrom. 29, 1483–1490 (2014).

    CAS 

    Google Scholar
     

  • 49.

    Dalai, T., Suzuki, K., Minagawa, M. & Nozaki, Y. Variations in seawater osmium isotope composition since the last glacial maximum: A case study from the Japan Sea. Chem. Geol. 220, 303–314 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Kuroda, J., Hori, R. S., Suzuki, K., Gröcke, D. R. & Ohkouchi, N. Marine osmium isotope record across the Triassic-Jurassic boundary from a Pacific pelagic site. Geology 38, 1095–1098 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Sato, H., Onoue, T., Nozaki, T. & Suzuki, K. Osmium isotope evidence for a large Late Triassic impact event. Nature Commun 4, 2455 (2013).

    ADS 

    Google Scholar
     

  • 52.

    Sharma, M., Papanastassiou, D. A. & Wasserburg, G. J. The concentration and isotopic composition of osmium in the oceans. Geochim. Cosmochim. Acta 61, 3287–3299 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 53.

    Oxburgh, R. Variations in the osmium isotope composition of sea water over the past 200,000 years. Earth Planet. Sci. Lett. 159, 183–191 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Ravizza, G. Variations of the 187Os/186Os ratio of seawater over the past 28 million years as inferred from metalliferous carbonates. Earth Planet. Sci. Lett. 118, 335–348 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • 55.

    Reusch, D. N., Ravizza, G., Maasch, K. A. & Wright, J. D. Miocene seawater 187Os/188Os ratios inferred from metalliferous carbonates. Earth Planet. Sci. Lett. 160, 163–178 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Peucker-Ehrenbrink, B., Ravizza, G. & Hofmann, A. W. The marine 187Os/186Os record of the past 80 million years. Earth Planet. Sci. Lett. 130, 155–167 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Ravizza, G. & Peucker-Ehrenbrink, B. The marine 187Os/188Os record of the Eocene–Oligocene transition: the interplay of weathering and glaciation. Earth Planet. Sci. Lett. 210, 151–165 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Dalai, T. K., Ravizza, G. E. & Peucker-Ehrenbrink, B. The Late Eocene 187Os/188Os excursion: Chemostratigraphy, cosmic dust flux and the Early Oligocene glaciation. Earth Planet. Sci. Lett. 241, 477–492 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Paquay, F. S., Ravizza, G. & Coccioni, R. The influence of extraterrestrial material on the late Eocene marine Os isotope record. Geochim. Cosmochim. Acta 144, 238–257 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Paquay, F. S., Ravizza, G. E. & Dalai, T. K. Determining chondritic impactor size from the marine osmium isotope record. Science 320, 214–218 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Van der Ploeg, R. et al. Middle Eocene greenhouse warming facilitated by diminished weathering feedback. Nature Commun 9, 2877, https://doi.org/10.1038/s41467-018-05104-9 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 62.

    Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. The Geologic Time Scale 2012 (Elsevier, 2012).

  • 63.

    Burton, K. W. Global weathering variations inferred from marine radiogenic isotope records. J. Geochem. Exp 88, 262–265 (2006).

    CAS 

    Google Scholar
     

  • 64.

    Klemm, V., Levasseur, S., Frank, M., Hein, J. R. & Halliday, A. N. Osmium isotope stratigraphy of a marine ferromanganese curst. Earth Planet. Sci. Lett. 238, 42–48 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Hussong, D. M. et al. Site 452: Mesozoic Pacific Ocean Basin. Init. Repts. DSDP 60, 77–93 (1982).


    Google Scholar
     

  • 66.

    Hesse, R. & Schacht, U. Early diagenesis of deep-sea sediments in Deep-Sea Sediments (eds. Huneke, H. & Mulder, T.) 557–713 (Elsevier, 2011).

  • 67.

    Koschinsky, A., Stascheit, A., Bau, M. & Halbach, P. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochim. Cosmochim. Acta 61, 4079–4094 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 68.

    Amante, C. & Eakins, B. W. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5C8276M, (accessed: 23rd May 2019) (2009).

  • 69.

    Wessel, P. & Smith, W. H. F. New, improved version of Generic Mapping Tools released. EOS Trans. Amer. Geophys. U 79, 579 (1998).

    ADS 

    Google Scholar
     

  • 70.

    Corliss, B. H. & Hollister, C. D. Cenozoic sedimentation in the central North Pacific. Nature 282, 707–709 (1979).

    ADS 

    Google Scholar
     

  • 71.

    Zachos, J. C., Quinn, T. M. & Salamy, K. A. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography 11, 251–266 (1996).

    ADS 

    Google Scholar
     

  • 72.

    Diester-Haass, L. & Zahn, R. Eocene-Oligocene transition in the Southern Ocean: History of water mass circulation and biological productivity. Geology 24, 163–166 (1996).

    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *