CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Wayne, R. K., Lehman, N., Allard, M. W. & Honeycutt, R. L. Mitochondrial DNA variability of the Gray Wolf: Genetic consequences of population decline and habitat fragmentation. Conserv. Biol.6, 559–569. https://doi.org/10.1046/j.1523-1739.1992.06040559.x (1992).

    Article 

    Google Scholar
     

  • 2.

    Albayrak, T. Anthropogenic barriers to the distribution of the Grey Wolf (Canis lupus Linnaeus, 1758) in the Beydağları Mountains area, Turkey. Zool. Middle East.52, 11–16. https://doi.org/10.1080/09397140.2011.10638474 (2011).

    Article 

    Google Scholar
     

  • 3.

    Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J. P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landscape Ecol.25, 419. https://doi.org/10.1007/s10980-009-9420-2 (2010).

    Article 

    Google Scholar
     

  • 4.

    Suutarinen, J. & Kojola, I. Poaching regulates the legally hunted wolf population in Finland. Biol. Conserv.215, 11–18. https://doi.org/10.1016/j.biocon.2017.08.031 (2017).

    Article 

    Google Scholar
     

  • 5.

    Suutarinen, J. & Kojola, I. One way or another: Predictors of wolf poaching in a legally harvested wolf population. Anim. Conserv.21, 414–422. https://doi.org/10.1111/acv.12409 (2018).

    Article 

    Google Scholar
     

  • 6.

    Blanco, J. C., Reig, S. & Cuesta, L. Distribution, status and conservation problems of the wolf Canis lupus in Spain. Biol. Conserv.60, 73–80. https://doi.org/10.1016/0006-3207(92)91157-N (1992).

    Article 

    Google Scholar
     

  • 7.

    Mech, L. D. Where can wolves live and how can we live with them?. Biol. Conserv.210, 310–317. https://doi.org/10.1016/j.biocon.2017.04.029 (2017).

    Article 

    Google Scholar
     

  • 8.

    Boitani, L., Phillips, M., & Jhala, Y. Canis lupus. The IUCN red list of threatened species 2018. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T3746A119623865.en. e.T3746A119623865 (2018).

  • 9.

    Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Appendices I, II and III. https://cites.org/eng/app/appendices.php (2019).

  • 10.

    Hunt, D. The face of the wolf is blessed, or is it? Diverging perceptions of the wolf. Folklore119, 319–334. https://doi.org/10.1080/00155870802352269 (2008).

    Article 

    Google Scholar
     

  • 11.

    Alonso-Castro, A. J. Use of medicinal fauna in Mexican traditional medicine. J. Ethnopharmacol.152, 53–70. https://doi.org/10.1016/j.jep.2014.01.005 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Alexander, S., Vyacheslav, S., Setev, S., Otgonbaatar, M. & Alexey, S. Contemporary significance of hunting and game animals use in traditional folk medicine in north-west Mongolia and adjacent Tuva. Balkan J. Wildl. Res.1, 76–81. https://doi.org/10.15679/bjwr.v1i1.7 (2014).

    Article 

    Google Scholar
     

  • 13.

    Alves, R.R.N., Pinto, L.C.L., Barboza, R.R.D. Souto, W.M.S. Oliveira, R.E.M.C.C. & Vieira, W.L.S. A global overview of carnivores used in traditional medicines. Animals in Traditional Folk Medicine. Springer Berlin Heidelberg. Chapter 9, 171–206, https://doi.org/10.1007/978-3-642-29026-8_9 (2013).

  • 14.

    Chen, T. et al. Evolution and development of animal medicine varieties in China. Chin. J. Inform. TCM.22, 1–5. https://doi.org/10.3969/j.issn.1005-5304.2015.03.001 (2015).

    Article 

    Google Scholar
     

  • 15.

    Zhang, L., Sun, Y. & Li, M. Investigation on ethnopharmacology of Daur nationality in Inner Mongolia. Mod. Chin. Med.20, 642–647. https://doi.org/10.13313/j.issn.1673-4890.20171215009 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Schmitt, E. & Wallace, S. Shape change and variation in the cranial morphology of wild Canids (Canis lupus, Canis latrans, Canis rufus) compared to domestic dogs (Canis familiaris) using geometric morphometrics. Int. J. Osteoarchaeol.24, 42–50. https://doi.org/10.1002/oa.1306 (2014).

    Article 

    Google Scholar
     

  • 17.

    Janssens, L., Spanoghe, I., Miller, R. & Van Dongen, S. Can orbital angle morphology distinguish dogs from wolves?. Zoomorphol.135, 149–158. https://doi.org/10.1007/s00435-015-0294-3 (2015).

    Article 

    Google Scholar
     

  • 18.

    Skoglund, P., Ersmark, E., Palkopoulou, E. & Dalén, L. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol.25, 1515–1519. https://doi.org/10.1016/j.cub.2015.04.019 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Langer, P., Giessen, W., Wilson, D. E. & Reeder, D. M. Mammal species of the world: a taxonomic and geographic reference. Mamm Biol.72, 191–192. https://doi.org/10.1016/j.mambio.2006.02.003 (2007).

    Article 

    Google Scholar
     

  • 20.

    Freedman, A. H. et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet.10, 1–12. https://doi.org/10.1371/journal.pgen.1004631 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Pilot, M. et al. Widespread, long-term admixture between grey wolves and domestic dogs across Eurasia and its implications for the conservation status of hybrids. Evol. Appl.11, 662–680. https://doi.org/10.1111/eva.12595 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Vonholdt, B. M. et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature464, 898–902. https://doi.org/10.1038/nature08837 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 23.

    Godinho, R. et al. Genetic evidence for multiple events of hybridization between wolves and domestic dogs in the Iberian Peninsula. Mol Ecol.20, 5154–5166. https://doi.org/10.1111/j.1365-294X.2011.05345.x (2011).

    Article 
    PubMed 

    Google Scholar
     

  • 24.

    Verardi, A., Lucchini, V. & Randi, E. Detecting introgressive hybridization between free-ranging domestic dogs and wild wolves (Canis lupus) by admixture linkage disequilibrium analysis. Mol. Ecol.15, 2845–2855. https://doi.org/10.1111/j.1365-294X.2006.02995.x (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Xie, J. et al. Identification of mammalian species using the short and highly variable regions of mitochondrial DNA. Mitochondr. DNA.26, 550–554. https://doi.org/10.3109/19401736.2013.873892 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Aggarwal, R. K., Kivisild, T., Ramadevi, J. & Singh, L. Mitochondrial DNA coding region sequences support the phylogenetic distinction of two Indian wolf species. J. Zool. Syst. Evol. Res.45, 163–172. https://doi.org/10.1111/j.1439-0469.2006.00400.x (2007).

    Article 

    Google Scholar
     

  • 27.

    Tobe, S. S., Kitchener, A. C. & Linacre, A. M. T. Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome b and cytochrome oxidase Subunit I Mitochondrial Genes. PLoS ONE5, 1–14. https://doi.org/10.1371/journal.pone.0014156 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Gemmell, N. J., Western, P. S., Watson, J. M. & Graves, J. A. Evolution of the mammalian mitochondrial control region-comparisons of control region sequences between monotreme and therian mammals. Mol. Biol. Evol.13, 798–808. https://doi.org/10.1093/oxfordjournals.molbev.a025640 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Nicholls, T. J. & Minczuk, M. In D-loop: 40 years of mitochondrial 7S DNA. Exp. Gerontol.56, 175–181. https://doi.org/10.1016/j.exger.2014.03.027 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 30.

    Savolainen, P. & Lundeberg, J. Forensic evidence based on mtDNA from dog and wolf hairs. J. Forensic Sci.44, 77–81. https://doi.org/10.1016/S1353-1131(99)90078-0 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Caniglia, R., Fabbri, E., Greco, C., Galaverni, M. & Randi, E. Forensic DNA against wildlife poaching: Identification of a serial wolf killing in Italy. Forens. Sci. Int. Gen.4, 334–338. https://doi.org/10.1016/j.fsigen.2009.10.012 (2010).

    Article 

    Google Scholar
     

  • 32.

    Caniglia, R., Fabbri, E., Mastrogiuseppe, L. & Randi, E. Who is who? identification of livestock predators using forensic genetic approaches. Forensic Sci. Int. Gen.7, 397–404. https://doi.org/10.1016/j.fsigen.2012.11.001 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Sindičić, M. et al. Mitochondrial DNA control region as a tool for species identification and distinction between wolves and dogs from Croatia. Vet. Arhiv.81, 249–258 (2011).


    Google Scholar
     

  • 34.

    Luo, A. et al. A simulation study of sample size for DNA barcoding. Ecol. Evol.5, 5869–5879. https://doi.org/10.1002/ece3.1846 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Sundqvist, A. K., Ellegren, H. & Vilà, C. Wolf or dog? genetic identification of predators from saliva collected around bite wounds on prey. Conserv. Genet.9, 1275–1279. https://doi.org/10.1007/s10592-007-9454-4 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Clark, L. A. et al. Chromosome-specific microsatellite multiplex sets for linkage studies in the domestic dog. Genomics84, 550–554. https://doi.org/10.1016/j.ygeno.2004.06.006 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Richman, M., Mellersh, C. S., André, C., Galibert, F. & Ostrander, E. A. Characterization of a minimal screening set of 172 microsatellite markers for genome-wide screens of the canine genome. J. Biochem. Bioph. Meth.47, 137–149. https://doi.org/10.1016/S0165-022X(00)00160-3 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Cargill, E. J., Clark, L. A., Steiner, J. M. & Murphy, K. E. Multiplexing of canine microsatellite markers for whole-genome screens. Genomics80, 250–253. https://doi.org/10.1006/geno.2002.6827 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Eggleston, M. L. et al. PCR multiplexed microsatellite panels to expedite canine genetic disease linkage analysis. Anim. Biotechnol.13, 223–235. https://doi.org/10.1081/abio-120016191 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 40.

    Campbell, N. R. & Narum, S. R. Quantitative PCR assessment of microsatellite and SNP genotyping with variable quality DNA extracts. Conserv. Genet.10, 779–784. https://doi.org/10.1007/s10592-008-9661-7 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Nielsen, R., Paul, J. S., Albrechtsen, A. & Song, Y. S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet.12, 443–451. https://doi.org/10.1038/nrg2986 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Manivannan, A. et al. Next-generation sequencing approaches in genome-wide discovery of single nucleotide polymorphism markers associated with pungency and disease resistance in pepper. BioMed. Res. Int.1–7, 2018. https://doi.org/10.1155/2018/5646213 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    von Holdt, B. M. et al. Identification of recent hybridization between gray wolves and domesticated dogs by SNP genotyping. Mamm. Genome.24, 80–88. https://doi.org/10.1007/s00335-012-9432-0 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Zhang, W. et al. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet plateau. PLoS Genet.10, 1–13. https://doi.org/10.1371/journal.pgen.1004466 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    SWFS Technical Working Group. Standards and Guidelines for Wildlife Forensic Analysis, Version 3. Ed. Lucy, M.I. Webster. Published by the Society for Wildlife Forensic Science, pp.21, https://www.wildlifeforensicscience.org/wp-content/uploads/2018/11/SWFS-Standards-and-Guidelines_Version-3_19-11-18.pdf (2018).

  • 46.

    Wang, G. D. et al. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nat. Commun.4, 1860. https://doi.org/10.1038/ncomms2814 (2013).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • 47.

    Smetanová, M. et al. From wolves to dogs, and back: genetic composition of the Czechoslovakian wolfdog. PLoS ONE10, e0143807. https://doi.org/10.1371/journal.pone.0143807 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Freedman, A. H., Lohmueller, K. E. & Wayne, R. K. Evolutionary history, selective sweeps, and deleterious variation in the dog. Annu. Rev. Ecol. Evol. Syst.47, 73–96. https://doi.org/10.1146/annurev-ecolsys-121415-032155 (2016).

    Article 

    Google Scholar
     

  • 49.

    Mehta, B., Daniel, R., Phillips, C. & McNevin, D. Forensically relevant SNaPshot assays for human DNA SNP analysis: A review. Int. J. Leg. Med.131, 21–37. https://doi.org/10.1007/s00414-016-1490-5 (2017).

    Article 

    Google Scholar
     

  • 50.

    Hughes-Stamm, S. R., Ashton, K. J. & van Daal, A. Assessment of DNA degradation and the genotyping success of highly degraded samples. Int. J. Leg. Med.125, 341–348. https://doi.org/10.1007/s00414-010-0455-3 (2010).

    Article 

    Google Scholar
     

  • 51.

    van Oorschot, R. A., Ballantyne, K. N. & Mitchell, R. J. Forensic trace DNA: A review. Invest. Genet.1, 14. https://doi.org/10.1186/2041-2223-1-14 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Fondevila, M., Børsting, C., Phillips, C., de la Puente, M. & Santos, C. EUROFORGEN-NoE Consortium, Carracedo, Á., Morling, N. & Lareu, M.V. Forensic SNP genotyping with SNaPshot: Technical considerations for the development and optimization of multiplexed SNP assays. Forensic Sci. Rev. 29, 57–76, (2017).

  • 53.

    Zar, M. S. et al. Forensic SNP genotyping with SNaPshot: development of a novel in-house SBE multiplex SNP Assay. J. Forensic Sci.63, 1824–1829. https://doi.org/10.1111/1556-4029.13783 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 54.

    Lonsinger, R. C., Daniel, D., Adams, J. R. & Waits, L. P. Consideration of sample source for establishing reliable genetic microsatellite data from mammalian carnivore specimens held in natural history collections. J. MAMMAL.100, 1678–1689. https://doi.org/10.1093/jmammal/gyz112 (2019).

    Article 

    Google Scholar
     

  • 55.

    Samsuwan, J. et al. A method for extracting DNA from hard tissues for use in forensic identification. Biomed. Rep.9, 433–438. https://doi.org/10.3892/br.2018.1148 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    McDonough, M. M., Parker, L. D., McInerney, N. R., Campana, M. G. & Maldonado, J. E. Performance of commonly requested destructive museum samples for mammalian genomic studies. J. MAMMAL.99, 789–802. https://doi.org/10.1093/jmammal/gyy080 (2018).

    Article 

    Google Scholar
     

  • 57.

    Sanchez, J. J. et al. A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis27, 1713–1724. https://doi.org/10.1002/elps.200500671 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 58.

    Budowle, B. & van Daal, A. Forensically relevant SNP classes. Biotechniques44, 603–610. https://doi.org/10.2144/000112806 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 59.

    Gebhardt, K. J. & Waits, L. P. Cross-species amplification and optimization of microsatellite markers for use in six Neotropical parrots. Mol. Ecol. Resour.8, 835–839. https://doi.org/10.1111/j.1755-0998.2007.02083.x (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 60.

    Maduna, S. N., Rossouw, C., Roodt-Wilding, R. & Bester Merwe, A. E. Microsatellite cross-species amplification and utility in southern African elasmobranchs: a valuable resource for fisheries management and conservation. BMC Res. Notes.7, 352. https://doi.org/10.1186/1756-0500-7-352 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Flickinger, M., Jun, G., Abecasis, G. R., Boehnke, M. & Kang, H. M. Correcting for sample contamination in genotype calling of DNA sequence data. Am. J. Hum. Genet.97, 284–290. https://doi.org/10.1016/j.ajhg.2015.07.002 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Kamvar, Z. N. et al. Developing educational resources for population genetics in R: an open and collaborative approach. Mol. Ecol. Resour.17, 120–128. https://doi.org/10.1111/1755-0998.12558 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 63.

    Chen, K. Y. et al. assignPOP: An R package for population assignment using genetic, non-genetic, or integrated data in a machine-learning framework. Method Ecol. Evol.9, 439–446. https://doi.org/10.1111/2041-210X.12897 (2018).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *