CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Lee, E. S. & Youn, Y. S. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. J. Pharmaceut. Investig. 46, 305–315. https://doi.org/10.1007/s40005-016-0250-3 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Kratz, F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132, 171–183. https://doi.org/10.1016/j.jconrel.2008.05.010 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Elsadek, B. & Kratz, F. Impact of albumin on drug delivery–new applications on the horizon. J Control Release 157, 4–28. https://doi.org/10.1016/j.jconrel.2011.09.069 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Ong, J., Zhao, J., Justin, A. W. & Markaki, A. E. Albumin-based hydrogels for regenerative engineering and cell transplantation. Biotechnol Bioeng 116, 3457–3468. https://doi.org/10.1002/bit.27167 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Katarivas Levy, G., Ong, J., Birch, M. A., Justin, A. W. & Markaki, A. E. Albumin-enriched fibrin hydrogel embedded in active ferromagnetic networks improves osteoblast differentiation and vascular self-organisation. Polymers (Basel) 11, 1743. https://doi.org/10.3390/polym11111743 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Baler, K., Michael, R., Szleifer, I. & Ameer, G. A. Albumin hydrogels formed by electrostatically triggered self-assembly and their drug delivery capability. Biomacromol 15, 3625–3633. https://doi.org/10.1021/bm500883h (2014).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    He, X. M. & Carter, D. C. Atomic structure and chemistry of human serum albumin. Nature 358, 209–215. https://doi.org/10.1038/358209a0 (1992).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Carter, D. C. & Ho, J. X. Structure of serum albumin. Adv. Protein. Chem 45, 153–203 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Arabi, S. H. et al. Serum albumin hydrogels in broad pH and temperature ranges: characterization of their self-assembled structures and nanoscopic and macroscopic properties. Biomater. Sci. 6, 478–492. https://doi.org/10.1039/c7bm00820a (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Chen, J. et al. Preparation, characterization and application of a protein hydrogel with rapid self-healing and unique autofluoresent multi-functionalities. J. Biomed. Mater. Res. A 107, 81–91. https://doi.org/10.1002/jbm.a.36534 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Zhang, P., Sun, F., Liu, S. & Jiang, S. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J Control Release 244, 184–193. https://doi.org/10.1016/j.jconrel.2016.06.040 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Murata, M., Tani, F., Higasa, T., Kitabatake, N. & Doi, E. Heat-induced transparent gel formation of bovine serum albumin. Biosci. Biotechnol. Biochem. 57, 43–46. https://doi.org/10.1271/bbb.57.43 (1993).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Desmet, T. et al. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromol 10, 2351–2378. https://doi.org/10.1021/bm900186s (2009).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Li, Y., Kim, J. H., Choi, E. H. & Han, I. Promotion of osteogenic differentiation by non-thermal biocompatible plasma treated chitosan scaffold. Sci. Rep. 9, 3712. https://doi.org/10.1038/s41598-019-40371-6 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Choi, Y.-R. et al. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation. Thin Solid Films 547, 235–240. https://doi.org/10.1016/j.tsf.2013.02.038 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Hsu, S. H., Lin, C. H. & Tseng, C. S. Air plasma treated chitosan fibers-stacked scaffolds. Biofabrication 4, 015002. https://doi.org/10.1088/1758-5082/4/1/015002 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Ko, Y. M., Choi, D. Y., Jung, S. C. & Kim, B. H. Characteristics of plasma treated electrospun polycaprolactone (PCL) nanofiber scaffold for bone tissue engineering. J. Nanosci. Nanotechnol. 15, 192–195. https://doi.org/10.1166/jnn.2015.8372 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Moriguchi, Y. et al. Impact of non-thermal plasma surface modification on porous calcium hydroxyapatite ceramics for bone regeneration. PLoS ONE 13, e0194303. https://doi.org/10.1371/journal.pone.0194303 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Zhang, Q. et al. Air-plasma treatment promotes bone-like nano-hydroxylapatite formation on protein films for enhanced in vivo osteogenesis. Biomater Sci 7, 2326–2334. https://doi.org/10.1039/c9bm00020h (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Lee, C. M., Yang, S. W., Jung, S. C. & Kim, B. H. Oxygen plasma treatment on 3D-printed chitosan/gelatin/hydroxyapatite scaffolds for bone tissue engineering. J. Nanosci. Nanotechnol. 17, 2747–2750. https://doi.org/10.1166/jnn.2017.13337 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Kinner, B. & Spector, M. Expression of smooth muscle actin in osteoblasts in human bone. J. Orthop. Res. 20, 622–632. https://doi.org/10.1016/S0736-0266(01)00145-0 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Boraas, L. C., Guidry, J. B., Pineda, E. T. & Ahsan, T. Cytoskeletal expression and remodeling in pluripotent stem cells. PLoS ONE 11, e0145084. https://doi.org/10.1371/journal.pone.0145084 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Woodruff, M. A., Jones, P., Farrar, D., Grant, D. M. & Scotchford, C. A. Human osteoblast cell spreading and vinculin expression upon biomaterial surfaces. J. Mol. Histol. 38, 491–499. https://doi.org/10.1007/s10735-007-9142-1 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 24.

    Van Tam, J. K. et al. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness. Sci. Technol. Adv. Mater. 13, 064205. https://doi.org/10.1088/1468-6996/13/6/064205 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Kocgozlu, L. et al. Selective and uncoupled role of substrate elasticity in the regulation of replication and transcription in epithelial cells. J. Cell. Sci. 123, 29–39. https://doi.org/10.1242/jcs.053520 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Gallego, L., Junquera, L., Meana, A., Garcia, E. & Garcia, V. Three-dimensional culture of mandibular human osteoblasts on a novel albumin scaffold: growth, proliferation, and differentiation potential in vitro. Int. J. Oral Maxillofac. Implants 25, 699–705 (2010).

    PubMed 

    Google Scholar
     

  • 27.

    Ma, X. et al. A biocompatible and biodegradable protein hydrogel with green and red autofluorescence: preparation, characterization and in vivo biodegradation tracking and modeling. Sci. Rep. 6, 19370. https://doi.org/10.1038/srep19370 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Borzova, V. A. et al. Kinetics of thermal denaturation and aggregation of bovine serum albumin. PLoS ONE 11, e0153495. https://doi.org/10.1371/journal.pone.0153495 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Molodenskiy, D. et al. Thermally induced conformational changes and protein-protein interactions of bovine serum albumin in aqueous solution under different pH and ionic strengths as revealed by SAXS measurements. Phys. Chem. Chem. Phys. 19, 17143–17155. https://doi.org/10.1039/c6cp08809k (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 30.

    Barone, G. et al. Thermal denaturation of bovine serum albumin and its oligomers and derivativespH dependence. J. Therm. Anal. 45, 1255–1264. https://doi.org/10.1007/bf02547420 (1995).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Matsudomi, N., Rector, D. & Kinsella, J. E. Gelation of bovine serum albumin and β-lactoglobulin; effects of pH, salts and thiol reagents. Food Chem. 40, 55–69. https://doi.org/10.1016/0308-8146(91)90019-k (1991).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Shirahama, H. et al. Fabrication of inverted colloidal crystal poly(ethylene glycol) scaffold: a three-dimensional cell culture platform for liver tissue engineering. J. Vis. Exp. https://doi.org/10.3791/54331 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Ng, S. S. et al. Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold. Biomaterials 182, 299–311. https://doi.org/10.1016/j.biomaterials.2018.07.043 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Wang, Y. et al. ECM proteins in a microporous scaffold influence hepatocyte morphology, function, and gene expression. Sci Rep 6, 37427. https://doi.org/10.1038/srep37427 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Fung, J. et al. Defining normal liver stiffness range in a normal healthy Chinese population without liver disease. PLoS ONE 8, e85067. https://doi.org/10.1371/journal.pone.0085067 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Colombo, S. et al. Normal liver stiffness and its determinants in healthy blood donors. Dig Liver Dis 43, 231–236. https://doi.org/10.1016/j.dld.2010.07.008 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Barr, R. G. et al. Elastography assessment of liver fibrosis: society of radiologists in ultrasound consensus conference statement. Radiology 276, 845–861. https://doi.org/10.1148/radiol.2015150619 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370. https://doi.org/10.1038/s41578-019-0169-1 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Amdursky, N. et al. Elastic serum-albumin based hydrogels: mechanism of formation and application in cardiac tissue engineering. J. Mater. Chem. B 6, 5604–5612. https://doi.org/10.1039/C8TB01014E (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Fleischer, S. et al. Albumin fiber scaffolds for engineering functional cardiac tissues. Biotechnol. Bioeng. 111, 1246–1257. https://doi.org/10.1002/bit.25185 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Humphrey, E. J. et al. Abstract 342: Serum albumin hydrogels alter excitation-contraction coupling in neonatal rat myocytes and human induced pluripotent stem cell derived cardiomyocytes. Circ. Res. 121, A342. https://doi.org/10.1161/res.121.suppl_1.342 (2017).

    Article 

    Google Scholar
     

  • 42.

    Uehara, N. et al. Osteoblast-derived Laminin-332 is a novel negative regulator of osteoclastogenesis in bone microenvironments. Lab. Invest. 97, 1235–1244. https://doi.org/10.1038/labinvest.2017.55 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Jiang, Z. et al. Laminin-521 promotes rat bone marrow mesenchymal stem cell sheet formation on light-induced cell sheet technology. Biomed Res Int 2017, 9474573. https://doi.org/10.1155/2017/9474573 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Mittag, F. et al. Laminin-5 and type I collagen promote adhesion and osteogenic differentiation of animal serum-free expanded human mesenchymal stromal cells. Orthop Rev 4, e36. https://doi.org/10.4081/or.2012.e36 (2012).

    Article 

    Google Scholar
     

  • 45.

    van Leeuwen, J. P. T. M., van der Eerden, B. C. J., van de Peppel, J., Stein, G. S. & Lian, J. B. in Osteoporosis 161–207 (2013).

  • 46.

    Komori, T. Roles of Runx2 in skeletal development. Adv. Exp. Med. Biol. 962, 83–93. https://doi.org/10.1007/978-981-10-3233-2_6 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 47.

    Czekanska, E. M., Stoddart, M. J., Richards, R. G. & Hayes, J. S. In search of an osteoblast cell model for in vitro research. Eur. Cells Mater. 24, 1–17. https://doi.org/10.22203/eCM.v024a01 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 48.

    Rutkovskiy, A., Stenslokken, K. O. & Vaage, I. J. Osteoblast differentiation at a glance. Med. Sci. Monit. Basic Res. 22, 95–106. https://doi.org/10.12659/msmbr.901142 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Stein, G. S. et al. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23, 4315–4329. https://doi.org/10.1038/sj.onc.1207676 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 50.

    Komori, T. Regulation of bone development and maintenance by Runx2. Front. Biosci. 13, 898–903. https://doi.org/10.2741/2730 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Varley, M. C. et al. Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states. Acta Biomater 33, 166–175. https://doi.org/10.1016/j.actbio.2016.01.041 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Katarivas Levy, G., Birch, M. A., Brooks, R. A., Neelakantan, S. & Markaki, A. E. Stimulation of human osteoblast differentiation in magneto-mechanically actuated ferromagnetic fiber networks. J. Clin. Med. 8, 1. https://doi.org/10.3390/jcm8101522 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 53.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *