[ad_1]
Urtti, A., Pipkin, J. D., Rork, G. & Repta, A. J. Controlled drug delivery devices for experimental ocular studies with timolol 1. In vitro release studies. Int. J. Pharm. 61, 235–240 (1990).
Hermann, M. M., Papaconstantinou, D., Muether, P. S., Georgopoulos, G. & Diestelhorst, M. Adherence with brimonidine in patients with glaucoma aware and not aware of electronic monitoring. Acta Ophthalmol. 89, E300–E305 (2011).
Agrawal, A. K., Das, M. & Jain, S. In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin. Drug Del. 9, 383–402 (2012).
Dumortier, G., Grossiord, J. L., Agnely, F. & Chaumeil, J. C. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm. Res. 23, 2709–2728 (2006).
Rowe, R. C., Sheskey, P. J., Owen, S. C. & American Pharmacists Association. Handbook of Pharmaceutical Excipients 6th edn (Pharmaceutical Press, 2009).
Escobar-Chavez, J. J. et al. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J. Pharm. Pharm. Sci. 9, 339–358 (2006).
Schuster, B. S., Ensign, L. M., Allan, D. B., Suk, J. S. & Hanes, J. Particle tracking in drug and gene delivery research: state-of-the-art applications and methods. Adv. Drug Deliv. Rev. 91, 70–91 (2015).
Squires, T. M. & Mason, T. G. Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42, 413–438 (2010).
Ensign, L. M., Schneider, C., Suk, J. S., Cone, R. & Hanes, J. Mucus penetrating nanoparticles: biophysical tool and method of drug and gene delivery. Adv. Mater. 24, 3887–3894 (2012).
Zignani, M., Tabatabay, C. & Gurny, R. Topical semi-solid drug delivery: kinetics and tolerance of ophthalmic hydrogels. Adv. Drug Deliv. Rev. 16, 51–60 (1995).
Cantor, L. B. Brimonidine in the treatment of glaucoma and ocular hypertension. Ther. Clin. Risk Manag. 2, 337–346 (2006).
McDougal, A. J. (ed.) Pharmacology/Toxicology NDA Review And Evaluation Simbrinza (NDA204251) (Food and Drug Administration Center for Drug Evaluation and Research, 2012).
Hackett, S. F. et al. Sustained delivery of acriflavine from the suprachoroidal space provides long term suppression of choroidal neovascularization. Biomaterials 243, 119935 (2020).
Tsujinaka, H. et al. Sustained treatment of retinal vascular diseases with self-aggregating sunitinib microparticles. Nat. Commun. 11, 694 (2020).
Fathalla, Z. M. A. et al. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: design, characterisation, toxicity and transcorneal permeation studies. Eur. J. Pharm. Biopharm. 114, 119–134 (2017).
Abdelkader, H., Ismail, S., Kamal, A. & Alany, R. G. Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J. Pharm. Sci. 100, 1833–1846 (2011).
Rodrigues, G. A. et al. Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm. Res. 35, 245 (2018).
Goodman, V. L. et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin. Cancer Res. 13, 1367–1373 (2007).
Roskoski, R. Jr. Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem. Biophys. Res. Commun. 356, 323–328 (2007).
Craig, J. P., Simmons, P. A., Patel, S. & Tomlinson, A. Refractive index and osmolality of human tears. Optom. Vis. Sci. 72, 718–724 (1995).
Gonzalez-Meijome, J. M. et al. Refractive index and equilibrium water content of conventional and silicone hydrogel contact lenses. Ophthalmic Physiol. Opt. 26, 57–64 (2006).
Patel, A., Cholkar, K., Agrahari, V. & Mitra, A. K. Ocular drug delivery systems: an overview. World J. Pharm. 2, 47–64 (2013).
Deokule, S., Sadiq, S. & Shah, S. Chronic open angle glaucoma: patient awareness of the nature of the disease, topical medication, compliance and the prevalence of systemic symptoms. Ophthal. Physiol. Opt. 24, 9–15 (2004).
Inoue, K. Managing adverse effects of glaucoma medications. Clin. Ophthalmol. 8, 903–913 (2014).
Schwartz, G. F. & Quigley, H. A. Adherence and persistence with glaucoma therapy. Surv. Ophthalmol. 53 (Suppl. 1), S57–S68 (2008).
Stewart, W. C., Chorak, R. P., Hunt, H. H. & Sethuraman, G. Factors associated with visual loss in patients with advanced glaucomatous changes in the optic nerve head. Am. J. Ophthalmol. 116, 176–181 (1993).
Shedden, A., Laurence, J., Tipping, R. & Timoptic, X. E. S. G. Efficacy and tolerability of timolol maleate ophthalmic gel-forming solution versus timolol ophthalmic solution in adults with open-angle glaucoma or ocular hypertension: a six-month, double-masked, multicenter study. Clin. Ther. 23, 440–450 (2001).
Walters, T. R. et al. Efficacy and tolerability of 0.5% timolol maleate ophthalmic gel-forming solution QD compared with 0.5% levobunolol hydrochloride BID in patients with open-angle glaucoma or ocular hypertension. Clin. Therapeutics 20, 1170–1178 (1998).
Lira, M., Pereira, C., Real Oliveira, M. E. & Castanheira, E. M. Importance of contact lens power and thickness in oxygen transmissibility. Cont. Lens Anterior Eye 38, 120–126 (2015).
Olsen, T. On the calculation of power from curvature of the cornea. Br. J. Ophthalmol. 70, 152–154 (1986).
Jager, R. D., Aiello, L. P., Patel, S. C. & Cunningham, E. T. Risks of intravitreous injection: a comprehensive review. Retina 24, 676–698 (2004).
Singer, M. A. et al. HORIZON: an open-label extension trial of ranibizumab for choroidal neovascularization secondary to age-related macular degeneration. Ophthalmology 119, 1175–1183 (2012).
Friedrich, S., Cheng, Y. L. & Saville, B. Drug distribution in the vitreous humor of the human eye: the effects of intravitreal injection position and volume. Curr. Eye Res. 16, 663–669 (1997).
Kaplan, H. J., Chiang, C. W., Chen, J. & Song, S. K. Vitreous volume of the mouse measured by quantitative high-resolution MRI. Invest. Ophthalmol. Vis. Sci. 51, 4414 (2010).
Doughty, M. J. & Zaman, M. L. Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv. Ophthalmol. 44, 367–408 (2000).
Zhang, H. et al. The measurement of corneal thickness from center to limbus in vivo in C57BL/6 and BALB/c mice using two-photon imaging. Exp. Eye Res. 115, 255–262 (2013).
Park, H. et al. Assessment of axial length measurements in mouse eyes. Optom. Vis. Sci. 89, 296–303 (2012).
Bekerman, I., Gottlieb, P. & Vaiman, M. Variations in eyeball diameters of the healthy adults. J. Ophthalmol. 2014, 503645 (2014).
Iwase, T. et al. Topical pazopanib blocks VEGF-induced vascular leakage and neovascularization in the mouse retina but is ineffective in the rabbit. Invest. Ophthalmol. Vis. Sci. 54, 503–511 (2013).
Boettger, M. K., Klar, J., Richter, A. & von Degenfeld, G. Topically administered regorafenib eye drops inhibit grade IV lesions in the non-human primate laser CNV model. Invest. Ophthalmol. Vis. Sci. 56, 2294 (2015).
Joussen, A. M. et al. The developing regorafenib eye drops for neovascular age-related macular degeneration (DREAM) study: an open-label phase II trial. Brit J. Clin. Pharm. 85, 347–355 (2019).
Horita, S. et al. Species differences in ocular pharmacokinetics and pharmacological activities of regorafenib and pazopanib eye-drops among rats, rabbits and monkeys. Pharmacol. Res. Perspect. 7, e00545 (2019).
Loftsson, T., Hreinsdottir, D. & Stefansson, E. Cyclodextrin microparticles for drug delivery to the posterior segment of the eye: aqueous dexamethasone eye drops. J. Pharm. Pharmacol. 59, 629–635 (2007).
Ohira, A. et al. Topical dexamethasone γ-cyclodextrin nanoparticle eye drops increase visual acuity and decrease macular thickness in diabetic macular oedema. Acta Ophthalmol. 93, 610–615 (2015).
Gilger, B. C. Ocular Pharmacology and Toxicology (Humana Press, 2014).
Ruiz-Ederra, J. et al. The pig eye as a novel model of glaucoma. Exp. Eye Res. 81, 561–569 (2005).
Olsen, T. W., Aaberg, S. Y., Geroski, D. H. & Edelhauser, H. F. Human sclera: thickness and surface area. Am. J. Ophthalmol. 125, 237–241 (1998).
Vurgese, S., Panda-Jonas, S. & Jonas, J. B. Scleral thickness in human eyes. PLoS ONE 7, e29692 (2012).
Olsen, T. W., Sanderson, S., Feng, X. & Hubbard, W. C. Porcine sclera: thickness and surface area. Invest. Ophthalmol. Vis. Sci. 43, 2529–2532 (2002).
Struble, C., Howard, S. & Relph, J. Comparison of ocular tissue weights (volumes) and tissue collection techniques in commonly used preclinical animal species. Acta Opthalmol. 92, https://doi.org/10.1111/j.1755-3768.2014.S005.x (2014).
Rajapaksa, T. E. et al. Intranasal M cell uptake of nanoparticles is independently influenced by targeting ligands and buffer ionic strength. J. Biol. Chem. 285, 23739–23746 (2010).
Ensign, L. M., Hoen, T. E., Maisel, K., Cone, R. A. & Hanes, J. S. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake. Biomaterials 34, 6922–6929 (2013).
Pihl, L., Wilander, E. & Nylander, O. Comparative study of the effect of luminal hypotonicity on mucosal permeability in rat upper gastrointestinal tract. Acta Physiol. 193, 67–78 (2008).
Noach, A. B. J. et al. Effect of anisotonic conditions on the transport of hydrophilic model compounds across monolayers of human colonic cell lines. J. Pharmacol. Exp. Ther. 270, 1373–1380 (1994).
Nance, E. A. et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 4, 149ra119 (2012).
Wilhelmus, K. R. The draize eye test. Surv. Ophthalmol. 45, 493–515 (2001).
Wolffsohn, J. S. et al. TFOS DEWS II diagnostic methodology report. Ocul. Surf. 15, 539–574 (2017).
Bron, A. J., Evans, V. E. & Smith, J. A. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea 22, 640–650 (2003).
[ad_2]
Source link