CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Gelman, S. A., Taylor, M. G., Nguyen, S. P., Leaper, C. & Bigler, R. S. Mother–child conversations about gender: understanding the acquisition of essentialist beliefs. Monogr. Soc. Res. Child Dev. 69, 1–142 (2004).

    Article 

    Google Scholar
     

  • 2.

    Bian, L., Leslie, S. J. & Cimpian, A. Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science 355, 389–391 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Ceci, S. J. & Williams, W. M. Understanding current causes of women’s underrepresentation in science. Proc. Natl Acad. Sci. USA 108, 3157–3162 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Leslie, S. J., Cimpian, A., Meyer, M. & Freeland, E. Expectations of brilliance underlie gender distributions across academic disciplines. Science 347, 262–265 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Miller, D. I., Eagly, A. H. & Linn, M. C. Women’s representation in science predicts national gender–science stereotypes: Evidence from 66 nations. J. Educ. Psychol. 107, 631 (2015).

    Article 

    Google Scholar
     

  • 6.

    Stoet, G. & Geary, D. C. The gender-equality paradox in science, technology, engineering, and mathematics education. Psychol. Sci. 29, 581–593 (2018).

    Article 

    Google Scholar
     

  • 7.

    Dryer, M. S. & Haspelmath M. eds. WALS Online (Max Planck Institute for Evolutionary Anthropology, 2013); https://wals.info/

  • 8.

    Rhodes, M. & Brickman, D. Preschoolers’ responses to social comparisons involving relative failure. Psychol. Sci. 19, 968–972 (2008).

    Article 

    Google Scholar
     

  • 9.

    Cimpian, A., Mu, Y. & Erickson, L. C. Who is good at this game? Linking an activity to a social category undermines children’s achievement. Psychol. Sci. 23, 533–541 (2012).

    Article 

    Google Scholar
     

  • 10.

    Cimpian, A. & Markman, E. M. The generic/nongeneric distinction influences how children interpret new information about social others. Child Dev. 82, 471–492 (2011).

    Article 

    Google Scholar
     

  • 11.

    Rhodes, M., Leslie, S. J., Yee, K. M. & Saunders, K. Subtle linguistic cues increase girls’ engagement in science. Psychol. Sci. 30, 455–466 (2019).

    Article 

    Google Scholar
     

  • 12.

    Greenwald, A. G., McGhee, D. E. & Schwartz, J. L. Measuring individual differences in implicit cognition: the implicit association test. J. Pers. Soc. Psychol. 74, 1464–1480 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Nosek, B. A., Banaji, M. R. & Greenwald, A. G. Harvesting implicit group attitudes and beliefs from a demonstration web site. Group Dyn. Theory Res. Pract. 6, 101–115 (2002).

    Article 

    Google Scholar
     

  • 14.

    Payne, B. K., Vuletich, H. A. & Brown-Iannuzzi, J. L. Historical roots of implicit bias in slavery. Proc. Natl Acad. Sci. USA 116, 11693–11698 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Hehman, E., Calanchini, J., Flake, J. K. & Leitner, J. B. Establishing construct validity evidence for regional measures of explicit and implicit racial bias. J. Exp. Psychol. Gen. 148, 1022–1040 (2019).

    Article 

    Google Scholar
     

  • 16.

    Charlesworth, T. E. & Banaji, M. R. Patterns of implicit and explicit attitudes: I. Long-term change and stability from 2007 to 2016. Psychol. Sci. 30, 174–192 (2019).

    Article 

    Google Scholar
     

  • 17.

    Firth, J. R. Studies in Linguistic Analysis (Philological Society, 1957).

  • 18.

    Landauer, T. K. & Dumais, S. T. A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104, 211–240 (1997).

    Article 

    Google Scholar
     

  • 19.

    Lund, K. & Burgess, C. Producing high-dimensional semantic spaces from lexical co-occurrence. Behav. Res. Methods Instrum. Comput. 28, 203–208 (1996).

    Article 

    Google Scholar
     

  • 20.

    Lenci, A. Distributional semantics in linguistic and cognitive research. Ital. J. Linguist. 20, 1–31 (2008).


    Google Scholar
     

  • 21.

    Caliskan, A., Bryson, J. J. & Narayanan, A. Semantics derived automatically from language corpora contain human-like biases. Science 356, 183–186 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Bhatia, S. The semantic representation of prejudice and stereotypes. Cognition 164, 46–60 (2017).

    Article 

    Google Scholar
     

  • 23.

    von der Malsburg, T., Poppels, T. & Levy, R. Implicit gender bias in linguistic descriptions for expected events: The cases of the 2016 US and 2017 UK election. Psychol. Sci. 31, 115–128 (2020).

    Article 

    Google Scholar
     

  • 24.

    Garg, N., Schiebinger, L., Jurafsky, D. & Zou, J. Word embeddings quantify 100 years of gender and ethnic stereotypes. Proc. Natl Acad. Sci. USA 115, E3635–E3644 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Greenwald, A. G. An AI stereotype catcher. Science 356, 133–134 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Lupyan, G. & Lewis, M. From words-as-mappings to words-as-cues: the role of language in semantic knowledge. Lang. Cogn. Neurosci. 34, 1319–1337 (2017).

    Article 

    Google Scholar
     

  • 27.

    Greenwald, A. G., Nosek, B. A. & Banaji, M. R. Understanding and using the implicit association test: I. an improved scoring algorithm. J. Pers. Soc. Psychol. 85, 197 (2003).

    Article 

    Google Scholar
     

  • 28.

    Forscher, P. S. et al. A meta-analysis of procedures to change implicit measures. J. Pers. Soc. Psychol. 117, 522–559 (2019).

    Article 

    Google Scholar
     

  • 29.

    CIA. The CIA World Factbook 2017 (2016); https://www.cia.gov/library/publications/the-world-factbook/index.html

  • 30.

    Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word representations in vector space. Preprint at arXiv https://arxiv.org/abs/1301.3781 (2013).

  • 31.

    van Paridon, J. & Thompson, B. subs2vec: word embeddings from subtitles in 55 languages. Preprint at OSF https://doi.org/10.31234/osf.io/fcrmy (2019).

  • 32.

    Lison, P. & Tiedemann, J. OpenSubtitles2016: extracting large parallel corpora from movie and TV subtitles. In Proc. 10th International Conference on Language Resources and Evaluation (ELRA, 2016).

  • 33.

    Bojanowski, P., Grave, E., Joulin, A. & Mikolov, T. Enriching word vectors with subword information. Trans. Assoc. Comput. Ling. 5, 135–146 (2017).


    Google Scholar
     

  • 34.

    Hussey, I., et al. The Attitudes, Identities, and Individual differences (AIID) Study and Dataset https://osf.io/pcjwf/ (2019).

  • 35.

    Falk, A. & Hermle, J. Relationship of gender differences in preferences to economic development and gender equality. Science 362, eaas9899 (2018).

    Article 

    Google Scholar
     

  • 36.

    Lane, K. A., Banaji, M. R., Nosek, B. A. & Greenwald, A. G. in Implicit Measures of Attitudes (eds. Wittenbrink, B. & Schwarz, N.) 59–102 (2007).

  • 37.

    Fazio, R. H. & Olson, M. A. Implicit measures in social cognition research: their meaning and use. Annu. Rev. Psychol. 54, 297–327 (2003).

    Article 

    Google Scholar
     

  • 38.

    Payne, B. K., Vuletich, H. A. & Lundberg, K. B. The bias of crowds: how implicit bias bridges personal and systemic prejudice. Psychol. Inq. 28, 233–248 (2017).

    Article 

    Google Scholar
     

  • 39.

    Marian, V. & Kaushanskaya, M. Language context guides memory content. Psychon. Bull. Rev. 14, 925–933 (2007).

    Article 

    Google Scholar
     

  • 40.

    Athanasopoulos, P. Cognitive representation of colour in bilinguals: the case of Greek blues. Biling. Lang. Cogn. 12, 83–95 (2009).

    Article 

    Google Scholar
     

  • 41.

    Scott, G. G., Keitel, A., Becirspahic, M., Yao, B. & Sereno, S. C. The Glasgow norms: ratings of 5,500 words on nine scales. Behav. Res. Methods 51, 1258–1270 (2019).

    Article 

    Google Scholar
     

  • 42.

    Joulin, A., Grave, E., Bojanowski, P. & Mikolov, T. Bag of tricks for efficient text classification. Preprint at arXiv https://arxiv.org/abs/1607.01759 (2016).

  • 43.

    Simons, G. F. & Charles, D. F. (eds) Ethnologue: Languages of the World (SIL International, 2018).

  • 44.

    Burnard, L. Users Reference Guide for the British National Corpus (Oxford Univ. Computing Services, 1995).

  • 45.

    Davies M. The Corpus of Contemporary American English (2008); https://corpus.byu.edu/coca/

  • 46.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar
     

  • 47.

    Misersky, J. et al. Norms on the gender perception of role nouns in Czech, English, French, German, Italian, Norwegian, and Slovak. Behav. Res. Methods 46, 841–871 (2014).

    PubMed 

    Google Scholar
     

  • 48.

    Haspelmath, M., Dryer, M. S., Gil, D. & Comrie, B. (eds) The World Atlas of Language Structures Online (Max Planck Institute for Evolutionary Anthropology, 2008); http://wals.info

  • 49.

    The World Bank. World Development Indicators (2017); http://data.worldbank.org/indicator/NY.GDP.PCAP.CD



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *