CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Gentekos, D. T., Sifri, R. J. & Fors, B. P. Controlling polymer properties through the shape of the molecular-weight distribution. Nat. Rev. Mater. 4, 761–774 (2019).


    Google Scholar
     

  • 2.

    Stürzel, M., Mihan, S. & Mülhaupt, R. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem. Rev. 116, 1398–1433 (2016).

    PubMed 

    Google Scholar
     

  • 3.

    Fors, B. P. et al. Exploiting molecular weight distribution shape to tune domain spacing in block copolymer thin films. J. Am. Chem. Soc. 140, 4639–4648 (2018).

    PubMed 

    Google Scholar
     

  • 4.

    Gentekos, D. T. & Fors, B. P. Molecular weight distribution shape as a versatile approach to tailoring block copolymer phase behavior. ACS Macro Lett. 7, 677–682 (2018).

    CAS 

    Google Scholar
     

  • 5.

    Whitfield, R. et al. Tailoring polymer dispersity and shape of molecular weight distributions: methods and applications. Chem. Sci. 10, 8724–8734 (2019).

    CAS 

    Google Scholar
     

  • 6.

    Rosenbloom, S. I., Gentekos, D. T., Silberstein, M. N. & Fors, B. P. Tailor-made thermoplastic elastomers: customisable materials via modulation of molecular weight distributions. Chem. Sci. 11, 1361–1367 (2020).

    CAS 

    Google Scholar
     

  • 7.

    Grubbs, R. B. & Grubbs, R. H. 50th anniversary perspective: living polymerization—emphasizing the molecule in Macromolecules. Macromolecules 50, 6979–6997 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Lutz, J.-F., Lehn, J.-M., Meijer, E. W. & Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 1, 16024 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Hillmyer, M. A. Polydisperse block copolymers: don’t throw them away. J. Polym. Sci. Part B Polym. Phys. 45, 3249–3251 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    McDaniel, M. P. Chapter 3—A review of the phillips supported chromium catalyst and its commercial use for ethylene polymerization. Adv. Catal. 53, 123–606 (2010).

    CAS 

    Google Scholar
     

  • 11.

    McDaniel, M. P. & DesLauriers, P. J. Ethylene polymers, HDPE. in Kirk-Othmer Encyclopedia of Chemical Technology 1–40 (John Wiley & Sons, Inc., 2015). https://doi.org/10.1002/0471238961.0809070811091919.a01.pub3

  • 12.

    Wang, X., Jiang, M., Zhou, Z., Gou, J. & Hui, D. 3D printing of polymer matrix composites: a review and prospective. Compos. Part B Eng. 110, 442–458 (2017).

    CAS 

    Google Scholar
     

  • 13.

    Ligon, S. C., Liska, R., Stampfl, J., Gurr, M. & Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Tan, R. et al. Precise modulation of molecular weight distribution for structural engineering. Chem. Sci. 10, 10698–10705 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Galli, P. The reactor granule technology: a revolutionary approach to polymer blends and alloys. Macromol. Symp. 78, 269–284 (1994).

    CAS 

    Google Scholar
     

  • 16.

    Matsushita, Y. et al. Molecular weight dependence of lamellar domain spacing of diblock copolymers in bulk. Macromolecules 23, 4313–4316 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Noro, A., Iinuma, M., Suzuki, J., Takano, A. & Matsushita, Y. Effect of composition distribution on microphase-separated structure from BAB triblock copolymers. Macromolecules 37, 3804–3808 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Matsushita, Y. et al. Effect of composition distribution on microphase-separated structure from diblock copolymers. Macromolecules 36, 8074–8077 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Meuler, A. J., Ellison, C. J., Evans, C. M., Hillmyer, M. A. & Bates, F. S. Polydispersity-driven transition from the orthorhombic fddd network to lamellae in poly(isoprene- b -styrene- b -ethylene oxide) triblock terpolymers. Macromolecules 40, 7072–7074 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Meuler, A. J., Mahanthappa, M. K., Hillmyer, M. A. & Bates, F. S. Synthesis of monodisperse α-Hydroxypoly(styrene) in hydrocarbon media using a functional organolithium. Macromolecules 40, 760–762 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Lynd, N. A. & Hillmyer, M. A. Influence of polydispersity on the self-assembly of diblock copolymers. Macromolecules 38, 8803–8810 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Lynd, N. A. & Hillmyer, M. A. Effects of polydispersity on the order-disorder transition in block copolymer melts. Macromolecules 40, 8050–8055 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Whitfield, R., Parkatzidis, K., Rolland, M., Truong, N. P. & Anastasaki, A. Tuning dispersity by photo‐induced atrp: monomodal distributions with ppm copper concentration. Angew. Chem. Int. Ed. 58, 13323–13328 (2019).

    CAS 

    Google Scholar
     

  • 24.

    Liu, D., Sponza, A. D., Yang, D. & Chiu, M. Modulating polymer dispersity with light: cationic polymerization of vinyl ethers using photochromic initiators. Angew. Chem., Int. Ed. 58, 16210–16216 (2019).

    CAS 

    Google Scholar
     

  • 25.

    Plichta, A., Zhong, M., Li, W., Elsen, A. M. & Matyjaszewski, K. Tuning dispersity in diblock copolymers using ARGET ATRP. Macromol. Chem. Phys. 213, 2659–2668 (2012).

    CAS 

    Google Scholar
     

  • 26.

    Sarbu, T. et al. Polystyrene with designed molecular weight distribution by atom transfer radical coupling. Macromolecules 37, 3120–3127 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Bendejacq, D., Ponsinet, V., Joanicot, M., Loo, Y.-L. & Register, R. A. Well-ordered microdomain structures in polydisperse poly(styrene)−poly(acrylic acid) diblock copolymers from controlled radical polymerization. Macromolecules 35, 6645–6649 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Gentekos, D. T., Dupuis, L. N. & Fors, B. P. Beyond dispersity: deterministic control of polymer molecular weight distribution. J. Am. Chem. Soc. 138, 1848–1851 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Alassia, L. M., Couso, D. A. & Meira, G. R. Molecular weight distribution control in a semibatch living-anionic polymerization. II. Experimental study. J. Appl. Polym. Sci. 36, 481–494 (1988).

    CAS 

    Google Scholar
     

  • 30.

    Sifri, R. J., Padilla-Vélez, O., Coates, G. W. & Fors, B. P. Controlling the shape of molecular weight distributions in coordination polymerization and its impact on physical properties. J. Am. Chem. Soc. 142, 1443–1448 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Domanskyi, S., Gentekos, D. T., Privman, V. & Fors, B. P. Predictive design of polymer molecular weight distributions in anionic polymerization. Polym. Chem. 11, 326–336 (2020).

    CAS 

    Google Scholar
     

  • 32.

    Meira, G. R. & Johnson, A. F. Molecular weight distribution control in continuous ‘living’ polymerizations through periodic operation of the monomer feed. Polym. Eng. Sci. 21, 415–423 (1981).

    CAS 

    Google Scholar
     

  • 33.

    Corrigan, N., Almasri, A., Taillades, W., Xu, J. & Boyer, C. Controlling molecular weight distributions through photoinduced flow polymerization. Macromolecules 50, 8438–8448 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Rubens, M. & Junkers, T. Comprehensive control over molecular weight distributions through automated polymerizations. Polym. Chem. 10, 6315–6323 (2019).

    CAS 

    Google Scholar
     

  • 35.

    Corrigan, N. et al. Copolymers with controlled molecular weight distributions and compositional gradients through flow polymerization. Macromolecules 51, 4553–4563 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Farkas, E., Meszena, Z. G. & Johnson, A. F. Molecular weight distribution design with living polymerization reactions. Ind. Eng. Chem. Res. 43, 7356–7360 (2004).

    CAS 

    Google Scholar
     

  • 37.

    Tonhauser, C., Natalello, A., Löwe, H. & Frey, H. Microflow technology in polymer synthesis. Macromolecules 45, 9551–9570 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Buss, B. L. & Miyake, G. M. Photoinduced controlled radical polymerizations performed in flow: methods, products, and opportunities. Chem. Mater. 30, 3931–3942 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Reis, M. H., Leibfarth, F. A. & Pitet, L. M. Polymerizations in continuous flow: recent advances in the synthesis of diverse polymeric materials. ACS Macro Lett. 9, 123–133 (2020).

    CAS 

    Google Scholar
     

  • 40.

    Nauman, E. B. Chemical Reactor Design, Optimization, and Scaleup. Chemical Reactor Design, Optimization, and Scaleup (John Wiley & Sons, Inc., 2008). https://doi.org/10.1002/9780470282076

  • 41.

    Plutschack, M. B., Pieber, B., Gilmore, K. & Seeberger, P. H. The hitchhiker’s guide to flow chemistry. Chem. Rev. 117, 11796–11893 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Agarwal, S. S. & Kleinstreuer, C. Analysis of styrene polymerization in a continuous flow tubular reactor. Chem. Eng. Sci. 41, 3101–3110 (1986).

    CAS 

    Google Scholar
     

  • 43.

    Wurm, F., Wilms, D., Klos, J., Löwe, H. & Frey, H. Carbanions on tap—living anionic polymerization in a microstructured reactor. Macromol. Chem. Phys. 209, 1106–1114 (2008).

    CAS 

    Google Scholar
     

  • 44.

    Nagaki, A., Tomida, Y. & Yoshida, J. Microflow-system-controlled anionic polymerization of styrenes. Macromolecules 41, 6322–6330 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Zhong, F., Zhou, Y. & Chen, M. The influence of mixing on chain extension by photo-controlled/living radical polymerization under continuous-flow conditions. Polym. Chem. 10, 4879–4886 (2019).

    CAS 

    Google Scholar
     

  • 46.

    Morsbach, J., Müller, A. H. E., Berger-Nicoletti, E. & Frey, H. Living polymer chains with predictable molecular weight and dispersity via carbanionic polymerization in continuous flow: mixing rate as a key parameter. Macromolecules 49, 5043–5050 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Reis, M. H., Varner, T. P. & Leibfarth, F. A. The influence of residence time distribution on continuous-flow polymerization. Macromolecules 52, 3551–3557 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Cortese, B. et al. Modeling of anionic polymerization in flow with coupled variations of concentration, viscosity, and diffusivity. Macromol. React. Eng. 6, 507–515 (2012).

    CAS 

    Google Scholar
     

  • 49.

    Russum, J. P., Jones, C. W. & Schork, F. J. Impact of flow regime on polydispersity in tubular RAFT miniemulsion polymerization. AIChE J. 52, 1566–1576 (2006).

    CAS 

    Google Scholar
     

  • 50.

    Lin, B., Hedrick, J. L., Park, N. H. & Waymouth, R. M. Programmable high-throughput platform for the rapid and scalable synthesis of polyester and polycarbonate libraries. J. Am. Chem. Soc. 141, 8921–8927 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Schikarski, T., Trzenschiok, H., Peukert, W. & Avila, M. Inflow boundary conditions determine T-mixer efficiency. React. Chem. Eng. 4, 559–568 (2019).

    CAS 

    Google Scholar
     

  • 52.

    Hu, X., Zhu, N., Fang, Z. & Guo, K. Continuous flow ring-opening polymerizations. React. Chem. Eng. 2, 20–26 (2017).

    CAS 

    Google Scholar
     

  • 53.

    Takahashi, Y. & Nagaki, A. Anionic polymerization using flow microreactors. Molecules 24, 1532 (2019).

    PubMed Central 

    Google Scholar
     

  • 54.

    Zhou, Y., Gu, Y., Jiang, K. & Chen, M. Droplet-flow photopolymerization aided by computer: overcoming the challenges of viscosity and facilitating the generation of copolymer libraries. Macromolecules 52, 5611–5617 (2019).

    CAS 

    Google Scholar
     

  • 55.

    Walsh, D. J., Dutta, S., Sing, C. E. & Guironnet, D. Engineering of molecular geometry in bottlebrush polymers. Macromolecules 52, 4847–4857 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Alizadeh, A., Nieto de Castro, C. A. & Wakeham, W. A. The theory of the Taylor dispersion technique for liquid diffusivity measurements. Int. J. Thermophys. 1, 243–284 (1980).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Beard, D. A. Taylor dispersion of a solute in a microfluidic channel. J. Appl. Phys. 89, 4667–4669 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Taylor, G. Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 225, 473–477 (1954).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. A Math. Phys. Eng. Sci. 219, 186–203 (1953).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Perera, D. et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science 359, 429–434 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Walsh, D. J., Hyatt, M. G., Miller, S. A. & Guironnet, D. Recent trends in catalytic polymerizations. ACS Catal. 9, 11153–11188 (2019).

    CAS 

    Google Scholar
     

  • 62.

    Lohmeijer, B. G. G. et al. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules 39, 8574–8583 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 63.

    Walsh, D. J. & Guironnet, D. Macromolecules with programmable shape, size, and chemistry. Proc. Natl Acad. Sci. 116, 1538–1542 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Nagy, K. D., Shen, B., Jamison, T. F. & Jensen, K. F. Mixing and dispersion in small-scale flow systems. Org. Process Res. Dev. 16, 976–981 (2012).

    CAS 

    Google Scholar
     

  • 65.

    Walsh, D. J., Lau, S. H., Hyatt, M. G. & Guironnet, D. Kinetic study of living ring-opening metathesis polymerization with third-generation grubbs catalysts. J. Am. Chem. Soc. 139, 13644–13647 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Hyatt, M. G., Walsh, D. J., Lord, R. L., Andino Martinez, J. G. & Guironnet, D. Mechanistic and kinetic studies of the ring opening metathesis polymerization of norbornenyl monomers by a grubbs third generation catalyst. J. Am. Chem. Soc. 141, 17918–17925 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Love, J. A., Morgan, J. P., Trnka, T. M. & Grubbs, R. H. A practical and highly active ruthenium-based catalyst that effects the cross metathesis of acrylonitrile. Angew. Chem., Int. Ed. 41, 4035–4037 (2002).

    CAS 

    Google Scholar
     

  • 68.

    Choi, T.-L. & Grubbs, R. H. Controlled living ring-opening-metathesis polymerization by a fast-initiating ruthenium catalyst. Angew. Chem., Int. Ed. 42, 1743–1746 (2003).

    CAS 

    Google Scholar
     

  • 69.

    Worsfold, D. J. & Bywater, S. Anionic polymerization of styrene. Can. J. Chem. 38, 1891–1900 (1960).

    CAS 

    Google Scholar
     

  • 70.

    Geacintov, C., Smid, J. & Szwarc, M. Kinetics of anionic polymerization of styrene in tetrahydrofuran. J. Am. Chem. Soc. 84, 2508–2514 (1962).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *