CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Mattoo, S. & Cherry, J. D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin. Microbiol. Rev.18, 326–382 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Bisgard, K. M. et al. Infant pertussis: who was the source? Pediatr. Infect. Dis. J.23, 985–989 (2004).

    PubMed 

    Google Scholar
     

  • 3.

    Haberling, D. L., Holman, R. C., Paddock, C. D. & Murphy, T. V. Infant and maternal risk factors for pertussis-related infant mortality in the United States, 1999 to 2004. Pediatr. Infect. Dis. J.28, 194–198 (2009).

    PubMed 

    Google Scholar
     

  • 4.

    Yeung, K. H. T., Duclos, P., Nelson, E. A. S. & Hutubessy, R. C. W. An update of the global burden of pertussis in children younger than 5 years: a modelling study. Lancet Infect. Dis.17, 974–980 (2017).

    PubMed 

    Google Scholar
     

  • 5.

    Chiappini, E., Stival, A., Galli, L. & de Martino, M. Pertussis re-emergence in the post-vaccination era. BMC Infect. Dis.13, 151 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Klein, N. P., Bartlett, J., Rowhani-Rahbar, A., Fireman, B. & Baxter, R. Waning protection after fifth dose of acellular pertussis vaccine in children. N. Engl. J. Med.367, 1012–1019 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Meade, B. D., Plotkin, S. A. & Locht, C. Possible options for new pertussis vaccines. J. Infect. Dis.209, S24–27 (2014).

    PubMed 

    Google Scholar
     

  • 8.

    Clark, T. A., Messonnier, N. E. & Hadler, S. C. Pertussis control: time for something new? Trends Microbiol.20, 211–213 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Stein, P. E. et al. The crystal structure of pertussis toxin. Structure2, 45–57 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Tamura, M., Nogimori, K., Yajima, M., Ase, K. & Ui, M. A role of the B-oligomer moiety of islet-activating protein, pertussis toxin, in development of the biological effects on intact cells. J. Biol. Chem.258, 6756–6761 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Hsia, J. A. et al. Amino acid-specific ADP-ribosylation. Sensitivity to hydroxylamine of [cysteine(ADP-ribose)]protein and [arginine(ADP-ribose)]protein linkages. J. Biol. Chem.260, 16187–16191 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Locht, C., Coutte, L. & Mielcarek, N. The ins and outs of pertussis toxin. FEBS J.278, 4668–4682 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Carbonetti, N. H., Artamonova, G. V., Mays, R. M. & Worthington, Z. E. V. Pertussis toxin plays an early role in respiratory tract colonization by Bordetella pertussis. Infect. Immun.71, 6358–6366 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Melvin, J. A., Scheller, E. V., Miller, J. F. & Cotter, P. A. Bordetella pertussis pathogenesis: current and future challenges. Nat. Rev. Microbiol.12, 274–288 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Seubert, A., D’Oro, U., Scarselli, M. & Pizza, M. Genetically detoxified pertussis toxin (PT-9K/129G): implications for immunization and vaccines. Expert Rev. Vaccines13, 1191–1204 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Burnette, W. N. et al. Pertussis toxin S1 mutant with reduced enzyme activity and a conserved protective epitope. Science242, 72–74 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Loosmore, S. M. et al. Engineering of genetically detoxified pertussis toxin analogs for development of a recombinant whooping cough vaccine. Infect. Immun.58, 3653–3662 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Pizza, M. et al. Mutants of pertussis toxin suitable for vaccine development. Science246, 497–500 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Antoine, R., Tallett, A., van Heyningen, S. & Locht, C. Evidence for a catalytic role of glutamic acid 129 in the NAD-glycohydrolase activity of the pertussis toxin S1 subunit. J. Biol. Chem.268, 24149–24155 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Cropley, I. et al. Mucosal and systemic immunogenicity of a recombinant, non-ADP-ribosylating pertussis toxin: effects of formaldehyde treatment. Vaccine13, 1643–1648 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Podda, A. et al. Metabolic, humoral, and cellular responses in adult volunteers immunized with the genetically inactivated pertussis toxin mutant PT-9K/129G. J. Exp. Med.172, 861–868 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Leroux-Roels, G. et al. A phase I, randomized, controlled, dose-ranging study of investigational acellular pertussis (aP) and reduced tetanus-diphtheria-acellular pertussis (TdaP) booster vaccines in adults. Hum. Vaccines Immunother.14, 45–58 (2018).


    Google Scholar
     

  • 23.

    Sirivichayakul, C. et al. Safety and immunogenicity of a combined Tetanus, Diphtheria, recombinant acellular Pertussis vaccine (TdaP) in healthy Thai adults. Hum. Vaccines Immunother.13, 136–143 (2017).


    Google Scholar
     

  • 24.

    Hazes, B., Boodhoo, A., Cockle, S. A. & Read, R. J. Crystal structure of the pertussis toxin-ATP complex: a molecular sensor. J. Mol. Biol.258, 661–671 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Lobban, M. D., Irons, L. I. & van Heyningen, S. Binding of NAD+ to pertussis toxin. Biochim. Biophys. Acta1078, 155–160 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Hikono, H. et al. Activation phenotype, rather than central– or effector–memory phenotype, predicts the recall efficacy of memory CD8+ T cells. J. Exp. Med.204, 1625–1636 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Fu, X. et al. Human natural killer cells expressing the memory-associated marker CD45RO from tuberculous pleurisy respond more strongly and rapidly than CD45RO− natural killer cells following stimulation with interleukin-12. Immunology134, 41–49 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    White, M. J., Nielsen, C. M., McGregor, R. H. C., Riley, E. H. C. & Goodier, M. R. Differential activation of CD57-defined natural killer cell subsets during recall responses to vaccine antigens. Immunology142, 140–150 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Baldwin, A. J. & Kay, L. E. NMR spectroscopy brings invisible protein states into focus. Nat. Chem. Biol.5, 808–814 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Naganathan, A. N. Modulation of allosteric coupling by mutations: from protein dynamics and packing to altered native ensembles and function. Curr. Opin. Struct. Biol.54, 1–9 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Malito, E. et al. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc. Natl Acad. Sci. USA109, 5229–5234 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Ishima, R. & Torchia, D. A. Protein dynamics from NMR. Nat. Struct. Biol.7, 740–743 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Konermann, L., Pan, J. & Liu, Y.-H. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev.40, 1224–1234 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Yoon, S. I., Jones, B. C., Logsdon, N. J. & Walter, M. R. Same structure, different function crystal structure of the Epstein-Barr virus IL-10 bound to the soluble IL-10R1 chain. Structure13, 551–564 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Ibsen, P. H. The effect of formaldehyde, hydrogen peroxide and genetic detoxification of pertussis toxin on epitope recognition by murine monoclonal antibodies. Vaccine14, 359–368 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Popovych, N., Sun, S., Ebright, R. H. & Kalodimos, C. G. Dynamically driven protein allostery. Nat. Struct. Mol. Biol.13, 831–838 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Roche, J. et al. Structural, energetic, and dynamic responses of the native state ensemble of staphylococcal nuclease to cavity-creating mutations. Proteins81, 1069–1080 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Edwards, K. M. et al. Comparison of 13 acellular pertussis vaccines: overview and serologic response. Pediatrics96, 548–557 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Greco, D. et al. A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis. Progetto Pertosse Working Group. N. Engl. J. Med.334, 341–348 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr.67, 293–302 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr.66, 22–25 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Ausar, S. F. et al. Application of extrinsic fluorescence spectroscopy for the high throughput formulation screening of aluminum-adjuvanted vaccines. J. Pharm. Sci.100, 431–440 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Wales, T. E., Fadgen, K. E., Gerhardt, G. C. & Engen, J. R. High-speed and high-resolution UPLC separation at zero degrees Celsius. Anal. Chem.80, 6815–6820 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Houde, D., Berkowitz, S. A. & Engen, J. R. The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J. Pharm. Sci.100, 2071–2086 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Zhu, S. et al. Hydrogen–deuterium exchange epitope mapping reveals distinct neutralizing mechanisms for two monoclonal antibodies against diphtheria toxin. Biochemistry58, 646–656 (2019).

  • 47.

    Bai, Y., Milne, J. S., Mayne, L. & Englander, S. W. Primary structure effects on peptide group hydrogen exchange. Proteins17, 75–86 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Masson, G. R. et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods16, 595–602 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Zhang, Z. & Smith, D. L. Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci.2, 522–531 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Wales, T. E., Eggertson, M. J. & Engen, J. R. In Mass Spectrometry Data Analysis in Proteomics, Vol. 1007 (ed. Matthiesen, R.) 263–288 (Humana Press, 2013).

  • 51.

    Hakimi, J. et al. In Vaccine Adjuvants, Vol. 1494 (ed. Fox, C. B.) 295–304 (Springer New York, 2017).

  • 52.

    Rahman, A. H., Tordesillas, L. & Berin, M. C. Heparin reduces nonspecific eosinophil staining artifacts in mass cytometry experiments. Cytom. A89, 601–607 (2016).

    CAS 

    Google Scholar
     

  • 53.

    Kotecha, N., Krutzik, P. O. & Irish, J. M. Web-based analysis and publication of flow cytometry experiments. Curr. Protoc. Cytom. Chapter 10, Unit 10.17 (2010).

  • 54.

    Amir, E. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol.31, 545–552 (2013).

    CAS 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *