CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • 2.

    Campbell, G. S. & Norman, J. M. An Introduction to Environmental Biophysics (Springer Science & Business Media, 2012).

  • 3.

    Lambers, H., Chapin, F. S. & Pons, T. L. Plant Physiological Ecology (Springer New York, 2008).

  • 4.

    Ögren, E. & Evans, J. R. Photosynthetic light-response curves. Planta 189, 182–190 (1993).


    Google Scholar
     

  • 5.

    Fisher, J. B., Huntzinger, D. N., Schwalm, C. R. & Sitch, S. Modeling the terrestrial biosphere. Annu. Rev. Environ. Resour. 39, 91–123 (2014).


    Google Scholar
     

  • 6.

    Walters, M. B. & Field, C. B. Photosynthetic light acclimation in two rainforest Piper species with different ecological amplitudes. Oecologia 72, 449–456 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Walters, R. G. & Horton, P. Acclimation of Arabidopsis thaliana to the light environment: changes in composition of the photosynthetic apparatus. Planta 195, 248–256 (1994).

    CAS 

    Google Scholar
     

  • 8.

    Bailey, S., Walters, R. G., Jansson, S. & Horton, P. Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213, 794–801 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Sims, D. A. & Pearcy, R. W. Photosynthetic characteristics of a tropical forest understory herb, Alocasia macrorrhiza, and a related crop species, Colocasia esculenta grown in contrasting light environments. Oecologia 79, 53–59 (1989).

    PubMed 

    Google Scholar
     

  • 10.

    Poorter, H. et al. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytol. 223, 1073–1105 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Hikosaka, K. & Terashima, I. A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. Plant Cell Environ. 18, 605–618 (1995).

    CAS 

    Google Scholar
     

  • 12.

    Warren, C. R. & Adams, M. A. Distribution of N, Rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant Cell Environ. 24, 597–609 (2001).

    CAS 

    Google Scholar
     

  • 13.

    Laisk, A., Nedbal, L. & Govindjee (eds) Photosynthesis in silico (Springer Netherlands, 2009); https://doi.org/10.1007/978-1-4020-9237-4

  • 14.

    Baldocchi, D. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56, 1–26 (2008).

    CAS 

    Google Scholar
     

  • 15.

    Baldocchi, D. D. How eddy covariance flux measurements have contributed to our understanding of global change biology. Glob. Change Biol. 26, 242–260 (2020).


    Google Scholar
     

  • 16.

    Keenan, T. F. et al. Widespread inhibition of daytime ecosystem respiration. Nat. Ecol. Evol. 3, 407–415 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).

    PubMed 

    Google Scholar
     

  • 18.

    Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Smith, N. G. et al. Global photosynthetic capacity is optimized to the environment. Ecol. Lett. 22, 506–517 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7, e38345 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Bauerle, W. L. et al. Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proc. Natl Acad. Sci. USA 109, 8612–8617 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    He, L. et al. Changes in the shadow: the shifting role of shaded leaves in global carbon and water cycles under climate change. Geophys. Res. Lett. 45, 5052–5061 (2018).


    Google Scholar
     

  • 24.

    Ögren, E. & Rosenqvist, E. On the significance of photoinhibition of photosynthesis in the field and its generality among species. Photosynth. Res. 33, 63–71 (1992).

    PubMed 

    Google Scholar
     

  • 25.

    Greer, D. H., Berry, J. A. & Björkman, O. Photoinhibition of photosynthesis in intact bean leaves: role of light and temperature, and requirement for chloroplast-protein synthesis during recovery. Planta 168, 253–260 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Öquist, G., Chow, W. S. & Anderson, J. M. Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta 186, 450–460 (1992).

    PubMed 

    Google Scholar
     

  • 27.

    Daniel, E. The temperature dependence of photoinhibition in leaves of Phaseolus vulgaris (L.). Influence of CO2 and O2 concentrations. Plant Sci. 124, 1–8 (1997).

    CAS 

    Google Scholar
     

  • 28.

    Tyystjärvi, E Photoinhibition of photosystem II. Int. Rev. Cell Mol. Biol. 300, 243–303 (2013).

    PubMed 

    Google Scholar
     

  • 29.

    Katul, G. G., Palmroth, S. & Oren, R. Leaf stomatal responses to vapour pressure deficit under current and CO2-enriched atmosphere explained by the economics of gas exchange. Plant Cell Environ. 32, 968–979 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Oren, R. et al. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22, 1515–1526 (1999).


    Google Scholar
     

  • 31.

    Laing, W. A. Temperature and light response curves for photosynthesis in kiwifruit (Actinidia chinensis) cv. Hayward. N. Zeal. J. Agric. Res. 28, 117–124 (1985).


    Google Scholar
     

  • 32.

    Leverenz, J. W. The effects of illumination sequence, CO2 concentration, temperature and acclimation on the convexity of the photosynthetic light response curve. Physiol. Plant 74, 332–341 (1988).


    Google Scholar
     

  • 33.

    Bazzaz, F. A. & Carlson, R. W. Photosynthetic acclimation to variability in the light environment of early and late successional plants. Oecologia 54, 313–316 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Valladares, F., Martinez-Ferri, E., Balaguer, L., Perez-Corona, E. & Manrique, E. Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy? New Phytol. 148, 79–91 (2000).

    CAS 

    Google Scholar
     

  • 35.

    Poorter, H. & Evans, J. R. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 116, 26–37 (1998).

    PubMed 

    Google Scholar
     

  • 36.

    Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).


    Google Scholar
     

  • 37.

    Murchie, E. H. & Horton, P. Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ. 20, 438–448 (1997).


    Google Scholar
     

  • 38.

    Alter, P., Dreissen, A., Luo, F. L. & Matsubara, S. Acclimatory responses of Arabidopsis to fluctuating light environment: comparison of different sunfleck regimes and accessions. Photosynth. Res. 113, 221–237 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Slattery, R. A., Walker, B. J., Weber, A. P. M. & Ort, D. R. The impacts of fluctuating light on crop performance. Plant Physiol. 176, 990–1003 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Murchie, E. H., Hubbart, S., Chen, Y., Peng, S. & Horton, P. Acclimation of rice photosynthesis to irradiance under field conditions. Plant Physiol. 130, 1999–2010 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Thornton, P. E. & Zimmermann, N. E. An improved canopy integration scheme for a land surface model with prognostic canopy structure. J. Clim. 20, 3902–3923 (2007).


    Google Scholar
     

  • 42.

    Grant, R. F. et al. Interannual variation in net ecosystem productivity of Canadian forests as affected by regional weather patterns—a FLUXNET-Canada synthesis. Agric. Meteorol. 149, 2022–2039 (2009).


    Google Scholar
     

  • 43.

    Ryu, Y. et al. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Glob. Biogeochem. Cycles 25, GB4017 (2011).


    Google Scholar
     

  • 44.

    Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4259 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Luo, X., Croft, H., Chen, J. M., He, L. & Keenan, T. F. Improved estimates of global terrestrial photosynthesis using information on leaf chlorophyll content. Glob. Change Biol. 25, 2499–2514 (2019).


    Google Scholar
     

  • 46.

    Pastorello, G. Z. et al. A new data set to keep a sharper eye on land–air exchanges. Eos 98, https://doi.org/10.1029/2017EO071597 (2017).

  • 47.

    Lasslop, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Change Biol. 16, 187–208 (2010).


    Google Scholar
     

  • 48.

    Schaefer, K. et al. A model–data comparison of gross primary productivity: results from the North American Carbon Program site synthesis. J. Geophys. Res. Biogeosci. 117, G03010 (2012).


    Google Scholar
     

  • 49.

    Ricciuto, D. M. et al. NACP Site: Terrestrial Biosphere Model Output Data in Original Format (ORNL DAAC, 2013); https://doi.org/10.3334/ornldaac/1192

  • 50.

    Ricciuto, D. M. et al. NACP Site: Terrestrial Biosphere Model and Aggregated Flux Data in Standard Format (ORNL DAAC, 2013); https://doi.org/10.3334/ornldaac/1183

  • 51.

    Gonsamo, A. et al. Improved assessment of gross and net primary productivity of Canada’s landmass. J. Geophys. Res. Biogeosci. 118, 1546–1560 (2013).


    Google Scholar
     

  • 52.

    Wang, Q. et al. Simulation and scaling of temporal variation in gross primary production for coniferous and deciduous temperate forests. Glob. Change Biol. 10, 37–51 (2004).


    Google Scholar
     

  • 53.

    Chen, J., Liu, J., Cihlar, J. & Goulden, M. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Model. 124, 99–119 (1999).

    CAS 

    Google Scholar
     

  • 54.

    Luo, X. et al. Comparison of big-leaf, two-big-leaf, and two-leaf upscaling schemes for evapotranspiration estimation using coupled carbon–water modeling. J. Geophys. Res. Biogeosci. 123, 207–225 (2018).


    Google Scholar
     

  • 55.

    Xu, L. & Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 23, 865–877 (2003).

    PubMed 

    Google Scholar
     

  • 56.

    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Fisher, J. B., Whittaker, R. J. & Malhi, Y. ET come home: potential evapotranspiration in geographical ecology. Glob. Ecol. Biogeogr. 20, 1–18 (2011).


    Google Scholar
     

  • 58.

    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Medlyn, B. E. et al. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ. 25, 1167–1179 (2002).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *