CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA. Cancer J. Clin. 69, 7–34 (2019).

    PubMed 

    Google Scholar
     

  • 2.

    Etzioni, R. et al. The case for early detection. Nat. Rev. Cancer 3, 243–252 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Shapiro, S., Venet, W., Strax, P., Venet, L. & Roeser, R. Ten- to fourteen-year effect of screening on breast cancer mortality. J. Natl. Cancer Inst. 69, 349–355 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Tabár, L. et al. Reduction in mortality from breast cancer after mass screening with mammography. Randomised trial from the breast cancer screening working group of the Swedish National Board of Health and Welfare. Lancet (London, England) 1, 829–832 (1985).


    Google Scholar
     

  • 5.

    Kolb, T. M., Lichy, J. & Newhouse, J. H. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225, 165–175 (2002).

    PubMed 

    Google Scholar
     

  • 6.

    Boyd, N. F. et al. Mammographic Density and the Risk and Detection of Breast Cancer. N. Engl. J. Med. 356, 227–236 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Pisano, E. D. et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N. Engl. J. Med. 353, 1773–1783 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Saslow, D. et al. American cancer society guidelines for breast screening with MRI as an adjunct to mammography. CA. Cancer J. Clin. 57, 75–89 (2007).

    PubMed 

    Google Scholar
     

  • 9.

    Lehman, C. D. et al. Cancer yield of mammography, MR, and US in high-risk women: prospective multi-institution breast cancer screening study. Radiology 244, 381–388 (2007).

    PubMed 

    Google Scholar
     

  • 10.

    Monticciolo, D. L. et al. Breast cancer screening in women at higher-than-average risk: recommendations from the ACR. J. Am. Coll. Radiol. 15, 408–414 (2018).

    PubMed 

    Google Scholar
     

  • 11.

    Stavros, A. T. et al. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 196, 123–134 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Rahbar, G. et al. Benign versus malignant solid breast masses: US differentiation. Radiology 213, 889–894 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Kolb, T. M., Lichy, J. & Newhouse, J. H. Occult cancer in women with dense breasts: detection with screening US–diagnostic yield and tumor characteristics. Radiology 207, 191–199 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Gordon, P. B. & Goldenberg, S. L. Malignant breast masses detected only by ultrasound. A retrospective review. Cancer 76, 626–630 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Berg, W. A. & Gilbreath, P. L. Multicentric and multifocal cancer: whole-breast US in preoperative evaluation. Radiology 214, 59–66 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Kaplan, S. S. Clinical utility of bilateral whole-breast US in the evaluation of women with dense breast tissue. Radiology 221, 641–649 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Brem, R. F., Lenihan, M. J., Lieberman, J. & Torrente, J. Screening Breast ultrasound: past, present, and future. Am. J. Roentgenol. 204, 234–240 (2015).


    Google Scholar
     

  • 18.

    Berg, W. A. et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA J. Am. Med. Assoc. 299, 2151–2163 (2008).

    CAS 

    Google Scholar
     

  • 19.

    Berg, W. A. et al. Ultrasound as the Primary Screening Test for Breast Cancer: Analysis From ACRIN 6666. J. Natl. Cancer Inst. 108, djv367 (2016).

    PubMed 

    Google Scholar
     

  • 20.

    Kaplan, S. S. Automated whole breast ultrasound. Radiol. Clin. N. Am. 52, 539–546 (2014).

    PubMed 

    Google Scholar
     

  • 21.

    Zanotel, M. et al. Automated breast ultrasound: basic principles and emerging clinical applications. Radiol. Med. 123, 1–12 (2018).

    PubMed 

    Google Scholar
     

  • 22.

    Samani, A., Zubovits, J. & Plewes, D. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52, 1565–1576 (2007).

    PubMed 

    Google Scholar
     

  • 23.

    Sarvazyan, A. P. et al. Biophysical bases of elasticity imaging. Springer, Boston. 223–240. https://doi.org/10.1007/978-1-4615-1943-0_23 (1995).

    Article 

    Google Scholar
     

  • 24.

    Sewell, C. W. Pathology of benign and malignant breast disorders. Radiol. Clin. N. Am. 33, 1067–1080 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Sandrin, L. et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasoun. Med. Biol. 29, 1705–1713 (2003).


    Google Scholar
     

  • 26.

    Ophir, J., Céspedes, I., Ponnekanti, H., Yazdi, Y. & li, X. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 13, 111–134 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Doherty, J. R., Trahey, G. E., Nightingale, K. R. & Palmeri, M. L. Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 685–701 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Itoh, A. et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 239, 341–350 (2006).

    PubMed 

    Google Scholar
     

  • 29.

    Sarvazyan, A. P., Rudenko, O. V., Swanson, S. D., Fowlkes, J. B. & Emelianov, S. Y. Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol. 24, 1419–1435 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Nightingale, K. R., Palmeri, M. L., Nightingale, R. W. & Trahey, G. E. On the feasibility of remote palpation using acoustic radiation force. J. Acoust. Soc. Am. 110, 625–634 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Sharma, A. C., Soo, M. S., Trahey, G. E. & Nightingale, K. R. Acoustic radiation force impulse imaging of in vivo breast masses. IEEE Ultrason. Symp. 1, 728–731 (2004).


    Google Scholar
     

  • 32.

    Nightingale, K., McAleavey, S. & Trahey, G. Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med. Biol. 29, 1715–1723 (2003).

    PubMed 

    Google Scholar
     

  • 33.

    Bercoff, J., Tanter, M. & Fink, M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 396–409 (2004).

    PubMed 

    Google Scholar
     

  • 34.

    Song, P. et al. Comb-push ultrasound shear elastography (CUSE): A novel method for two-dimensional shear elasticity imaging of soft tissues. IEEE Trans. Med. Imaging 31, 1821–1832 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Yoon, J. H., Jung, H. K., Lee, J. T. & Ko, K. H. Shear-wave elastography in the diagnosis of solid breast masses: What leads to false-negative or false-positive results?. Eur. Radiol. 23, 2432–2440 (2013).

    PubMed 

    Google Scholar
     

  • 36.

    Toprak, N., Yokus, A., Gündüz, M. & Akdenız, H. Histopathology and elastography discordance in evaluation of breast lesions with acoustic radiation force impulse elastography. Polish J. Radiol. 84, 224–233 (2019).


    Google Scholar
     

  • 37.

    Fatemi, M. & Greenleaf, J. F. Ultrasound-stimulated vibro-acoustic spectrography. Science 280, 82–85 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Fatemi, M. & Greenleaf, J. F. Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission. PNAS 96, 6603 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Kamimura, H. A. S. et al. Vibroacoustography for the assessment of total hip arthroplasty. Clinics 68, 463–468 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Kamimura, H. A. S., Urban, M. W., Carneiro, A. A. O., Fatemi, M. & Alizad, A. Vibro-acoustography beam formation with reconfigurable arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1421–1431 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Konofagou, E. E. & Hynynen, K. Localized harmonic motion imaging: theory, simulations and experiments. Ultrasound Med. Biol. 29, 1405–1413 (2003).

    PubMed 

    Google Scholar
     

  • 42.

    Baggio, A. L., Kamimura, H. A. S., Henrique Lopes, J., Carneiro, A. A. O. & Silva, G. T. Parametric array signal in confocal vibro-acoustography. Appl. Acoust. 126, 143–148 (2017).


    Google Scholar
     

  • 43.

    Maleke, C., Pernot, M. & Konofagou, E. E. Single-element focused ultrasound transducer method for harmonic motion imaging. Ultrason. Imaging 28, 144–158 (2006).

    PubMed 

    Google Scholar
     

  • 44.

    Payen, T. et al. Harmonic motion imaging of pancreatic tumor stiffness indicates disease state and treatment response. Clin. Cancer Res. 26, 1297–1308 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • 45.

    Han, Y., Wang, S., Payen, T. & Konofagou, E. Human breast tumor characterization on post-surgical mastectomy specimens using harmonic motion imaging (HMI). in IEEE International Ultrasonics Symposium, IUS (IEEE Computer Society, 2017). https://doi.org/10.1109/ULTSYM.2017.8091551

  • 46.

    Chen, H. et al. Harmonic motion imaging for abdominal tumor detection and high-intensity focused ultrasound ablation monitoring: An in vivo feasibility study in a transgenic mouse model of pancreatic cancer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 1662–1673 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Vappou, J. et al. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using Harmonic Motion Imaging (HMI). Phys. Med. Biol. 60, 2853–2868 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Han, Y., Wang, S., Hibshoosh, H., Taback, B. & Konofagou, E. Tumor characterization and treatment monitoring of postsurgical human breast specimens using harmonic motion imaging (HMI). Breast Cancer Res. 18, 46 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Han, Y. Development of a Harmonic Motion Imaging guided Focused Ultrasound system for breast tumor characterization and treatment monitoring. https://doi.org/10.7916/D8KS83H7 (2018).

    Article 

    Google Scholar
     

  • 50.

    Han, Y., Wang, S., Payen, T. & Konofagou, E. Fast lesion mapping during HIFU treatment using harmonic motion imaging guided focused ultrasound (HMIgFUS) in vitro and in vivo. Phys. Med. Biol. 62, 3111–3123 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Nakashima, K. & Moriya, T. Comprehensive ultrasound diagnosis for intraductal spread of primary breast cancer. Breast Cancer 20, 3–12 (2013).

    PubMed 

    Google Scholar
     

  • 52.

    Denis, M. et al. Comb-push ultrasound shear elastography of breast masses: initial results show promise. PLoS ONE 10, e0119398 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Shiina, T. et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology. Ultrasound Med. Biol. 41, 1126–1147 (2015).

    PubMed 

    Google Scholar
     

  • 54.

    Chen, E. J., Adler, R. S., Carson, P. L., Jenkins, W. K. & O’Brien, W. D. Ultrasound tissue displacement imaging with application to breast cancer. Ultrasound Med. Biol. 21, 1153–1162 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Earl, H. Donegan WL, Spratt JS: Cancer of the breast 5th Edition. London, UK: Elsevier Science Ltd.; 2002. 1050pp. Breast Cancer Res. 6, 88 (2004).

  • 56.

    Elseedawy, M., Whelehan, P., Vinnicombe, S., Thomson, K. & Evans, A. Factors influencing the stiffness of fibroadenomas at shear wave elastography. Clin. Radiol. 71, 92–95 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Samani, A. & Plewes, D. A method to measure the hyperelastic parameters of ex vivo breast tissue samples. Phys. Med. Biol. 49, 4395–4405 (2004).

    PubMed 

    Google Scholar
     

  • 58.

    Nabavizadeh, A. et al. Technical note: In vivo Young’s modulus mapping of pancreatic ductal adenocarcinoma during HIFU ablation using harmonic motion elastography (HME). Med. Phys. 45, 5244–5250 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Nabavizadeh, A. et al. Noninvasive Young’s modulus visualization of fibrosis progression and delineation of pancreatic ductal adenocarcinoma (PDAC) tumors using Harmonic Motion Elastography (HME) in vivo. Theranostics 10, 4614–4626 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Han, Y., Payen, T., Wang, S. & Konofagou, E. Focused ultrasound steering for harmonic motion imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 292–294 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Stavros, A. T., Rapp, C. L. & Parker, S. H. Breast ultrasound (Lippincott Williams & Wilkins, Philadelphia, 2004).


    Google Scholar
     

  • 62.

    Barr, R. G. & Zhang, Z. Effects of Precompression on Elasticity Imaging of the Breast. J. Ultrasound Med. 31, 895–902 (2012).

    PubMed 

    Google Scholar
     

  • 63.

    Wade, O. L. Movements of the thoracic cage and diaphragm in respiration. J. Physiol. 124, 193–212 (1954).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Saharkhiz, N., Han, Y., Nabavizadeh, A., Ha, R. & Konofagou, E. A harmonic motion imaging (HMI) clinical system for detection and characterization of in vivo human breast masses – initial feasibility. In 2018 IEEE international ultrasonics symposium (IUS), Kobe, pp. 1–9. https://doi.org/10.1109/ULTSYM.2018.8579993 (2018).

  • 65.

    Jianwen Luo, J. & Konofagou, E. E. A fast normalized cross-correlation calculation method for motion estimation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1347–1357 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Nightingale, K., Palmeri, M. & Trahey, G. Analysis of contrast in images generated with transient acoustic radiation force. Ultrasound Med. Biol. 32, 61–72 (2006).

    PubMed 

    Google Scholar
     



  • Source link

    One thought on “Harmonic motion imaging of human breast masses: an in vivo clinical feasibility”

    Leave a Reply

    Your email address will not be published. Required fields are marked *