CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Jouannet, P., Wang, C., Eustache, F., Kold-Jensen, T. & Auger, J. Semen quality and male reproductive health: The controversy about human sperm concentration decline. Apmis 109, S48–S61 (2001).


    Google Scholar
     

  • 2.

    Basnet, P., Hansen, S. A., Olaussen, I. K., Hentemann, M. A. & Acharya, G. Changes in the semen quality among 5739 men seeking infertility treatment in Northern Norway over past 20 years (1993–2012). J. Reprod. Biotechnol. Fertil. 5, 2058915816633539 (2016).


    Google Scholar
     

  • 3.

    Levine, H. et al. Temporal trends in sperm count: A systematic review and meta-regression analysis. Hum. Reprod. Update 23, 646–659 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Virtanen, H. E., Jørgensen, N. & Toppari, J. Semen quality in the 21st century. Nat. Rev. Urol. 14, 120 (2017).

    PubMed 

    Google Scholar
     

  • 5.

    Amann, R. P. & Waberski, D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 81, 5-17.e13 (2014).

    PubMed 

    Google Scholar
     

  • 6.

    Zinaman, M. J., Uhler, M. L., Vertuno, E., Fisher, S. G. & Clegg, E. D. Evaluation of computer-assisted semen analysis (CASA) with IDENT stain to determine sperm concentration. J. Androl. 17, 288–292 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Daloglu, M. U. et al. Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume. Light Sci. Appl. 7, 17121–17121 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Ferrara, M. A. et al. Label-free imaging and biochemical characterization of bovine sperm cells. Biosensors 5, 141–157 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Henkel, R. Sperm preparation: State-of-the-art—physiological aspects and application of advanced sperm preparation methods. Asian J. Androl. 14, 260 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Nascimento, J., Botvinick, E. L., Shi, L. Z., Durrant, B. & Berns, M. W. Analysis of sperm motility using optical tweezers. J. Biomed. Opt. 11, 044001 (2006).

    ADS 
    PubMed 

    Google Scholar
     

  • 11.

    Ramalho-Santos, J. et al. Probing the structure and function of mammalian sperm using optical and fluorescence microscopy. Modern Res. Educ. Topics Microsc. 1, 394–402 (2007).


    Google Scholar
     

  • 12.

    Moscatelli, N. et al. Single-cell-based evaluation of sperm progressive motility via fluorescent assessment of mitochondria membrane potential. Sci. Rep. 7, 1–10 (2017).

    CAS 

    Google Scholar
     

  • 13.

    Kao, S.-H., Chao, H.-T. & Wei, Y.-H. Multiple deletions of mitochondrial DNA are associated with the decline of motility and fertility of human spermatozoa. Mol. Human Reprod. 4, 657–666 (1998).

    CAS 

    Google Scholar
     

  • 14.

    Da Costa, R., Amaral, S., Redmann, K., Kliesch, S. & Schlatt, S. Spectral features of nuclear DNA in human sperm assessed by Raman microspectroscopy: Effects of UV-irradiation and hydration. PLoS ONE 13, e0207786 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Dubey, V. et al. Partially spatially coherent digital holographic microscopy and machine learning for quantitative analysis of human spermatozoa under oxidative stress condition. Sci. Rep. 9, 1–10 (2019).

    ADS 

    Google Scholar
     

  • 16.

    Martini, A. C. et al. Effects of alcohol and cigarette consumption on human seminal quality. Fertil. Steril. 82, 374–377 (2004).

    PubMed 

    Google Scholar
     

  • 17.

    Di Caprio, G. et al. Holographic imaging of unlabelled sperm cells for semen analysis: A review. J. Biophotonics 8, 779–789 (2015).

    PubMed 

    Google Scholar
     

  • 18.

    Rivenson, Y. et al. PhaseStain: The digital staining of label-free quantitative phase microscopy images using deep learning. Light Sci. Appl. 8, 1–11 (2019).


    Google Scholar
     

  • 19.

    Butola, A., Ahmad, A., Dubey, V., Senthilkumaran, P. & Mehta, D. S. Spectrally resolved laser interference microscopy. Laser Phys. Lett. 15, 075602 (2018).

    ADS 

    Google Scholar
     

  • 20.

    Majeed, H., Nguyen, T. H., Kandel, M. E., Kajdacsy-Balla, A. & Popescu, G. Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM). Sci. Rep. 8, 1–9 (2018).


    Google Scholar
     

  • 21.

    Lee, M. et al. Label-free optical quantification of structural alterations in Alzheimer’s disease. Sci. Rep. 6, 31034 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Doblas, A. I., Sánchez-Ortiga, E., Martínez-Corral, M., Saavedra, G. & Garcia-Sucerquia, J. Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy. J. Biomed. Opt. 19, 046022 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • 23.

    Sridharan, S., Macias, V., Tangella, K., Kajdacsy-Balla, A. & Popescu, G. Prediction of prostate cancer recurrence using quantitative phase imaging. Sci. Rep. 5, 1–10 (2015).


    Google Scholar
     

  • 24.

    Shan, M., Kandel, M. E. & Popescu, G. Refractive index variance of cells and tissues measured by quantitative phase imaging. Opt. Express 25, 1573–1581 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • 25.

    Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photonics 8, 256 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Nguyen, T. H., Kandel, M. E., Rubessa, M., Wheeler, M. B. & Popescu, G. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8, 1–9 (2017).


    Google Scholar
     

  • 27.

    Daloglu, M. U. et al. 3D imaging of sex-sorted bovine spermatozoon locomotion, head spin and flagellum beating. Sci. Rep. 8, 1–9 (2018).

    CAS 

    Google Scholar
     

  • 28.

    Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Jo, Y. et al. Quantitative phase imaging and artificial intelligence: A review. IEEE J. Sel. Top. Quantum Electron. 25, 1–14 (2018).


    Google Scholar
     

  • 30.

    Mirsky, S. K., Barnea, I., Levi, M., Greenspan, H. & Shaked, N. T. Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning. Cytometry Part A 91, 893–900 (2017).


    Google Scholar
     

  • 31.

    Butola, A. et al. Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography. Appl. Opt. 58, A135–A141 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • 32.

    Girshovitz, P. & Shaked, N. T. Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization. Biomed. Opt. Express 3, 1757–1773 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Butola, A. et al. Deep learning architecture LightOCT for diagnostic decision support using optical coherence tomography images of biological samples. arXiv preprint, arXiv:1812.02487 (2018).

  • 34.

    Li, F. et al. Deep learning-based automated detection of retinal diseases using optical coherence tomography images. Biomed. Opt. Express 10, 6204–6226 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Fanous, M., Keikhosravi, A., Kajdacsy-Balla, A., Eliceiri, K. W. & Popescu, G. Quantitative phase imaging of stromal prognostic markers in pancreatic ductal adenocarcinoma. Biomed. Opt. Express 11, 1354–1364 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Falk, T. et al. U-Net: Deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Wang, H. et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 16, 103–110 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Choi, G. et al. Cycle-consistent deep learning approach to coherent noise reduction in optical diffraction tomography. Opt. Express 27, 4927–4943 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • 39.

    Song, Y. et al. A deep learning based framework for accurate segmentation of cervical cytoplasm and nuclei. In 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2903–2906 (2014).

  • 40.

    Ozaki, Y. et al. Label-free classification of cells based on supervised machine learning of subcellular structures. PLoS ONE 14, e0211347 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Chaveiro, A., Machado, L., Frijters, A., Engel, B. & Woelders, H. Improvement of parameters of freezing medium and freezing protocol for bull sperm using two osmotic supports. Theriogenology 65, 1875–1890 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Watson, P. F. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 60, 481–492 (2000).

    PubMed 

    Google Scholar
     

  • 43.

    Wongtawan, T., Saravia, F., Wallgren, M., Caballero, I. & Rodríguez-Martínez, H. Fertility after deep intra-uterine artificial insemination of concentrated low-volume boar semen doses. Theriogenology 65, 773–787 (2006).

    PubMed 

    Google Scholar
     

  • 44.

    Agarwal, A., Prabakaran, S. A. & Said, T. M. Prevention of oxidative stress injury to sperm. J. Androl. 26, 654–660 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Lemma, A. Effect of cryopreservation on sperm quality and fertility. Artif. Insemin. Farm Anim. 12, 191–216 (2011).


    Google Scholar
     

  • 46.

    Ramírez-Reveco, A., Hernández, J. L. & Aros, P. Long-term storing of frozen semen at −196 °C does not affect the post-thaw sperm quality of bull semen. Cryopreserv. Eukaryot. 91 (2016).

  • 47.

    Donnelly, E. T., McClure, N. & Lewis, S. E. Antioxidant supplementation in vitro does not improve human sperm motility. Fertil. Steril. 72, 484–495 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Ingólfsson, H. I. et al. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 (2014).

    PubMed 

    Google Scholar
     

  • 49.

    Kopeika, J., Thornhill, A. & Khalaf, Y. The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence. Hum. Reprod. Update 21, 209–227 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Donnelly, E. T., Steele, E. K., McClure, N. & Lewis, S. E. Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum. Reprod. 16, 1191–1199 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Woolley, D. & Richardson, D. Ultrastructural injury to human spermatozoa after freezing and thawing. Reproduction 53, 389–394 (1978).

    CAS 

    Google Scholar
     

  • 52.

    Ozkavukcu, S., Erdemli, E., Isik, A., Oztuna, D. & Karahuseyinoglu, S. Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. J. Assist. Reprod. Genet. 25, 403–411 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Barthelemy, C. et al. Ultrastructural changes in membranes and acrosome of human sperm during cryopreservation. Arch. Androl. 25, 29–40 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    O’connell, M., McClure, N. & Lewis, S. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum. Reprod. 17, 704–709 (2002).

    PubMed 

    Google Scholar
     

  • 55.

    Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. JOSA 72, 156–160 (1982).

    ADS 

    Google Scholar
     

  • 56.

    Goldstein, R. M., Zebker, H. A. & Werner, C. L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci 23, 713–720 (1988).

    ADS 

    Google Scholar
     

  • 57.

    Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT press, Cambridge, 2016).


    Google Scholar
     

  • 58.

    Iwai, H. et al. Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry. Opt. Lett. 29, 2399–2401 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • 59.

    Organization, WH. World Health Statistics 2010 (World Health Organization, Geneva, 2010).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *