CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S. & Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Yan, C. et al. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26, 2022–2027 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Lu, N., Lu, C., Yang, S. & Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22, 4044–4050 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Amjadi, M., Kyung, K. U., Park, I. & Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 26, 1678–1698 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Takamatsu, S. et al. Wearable keyboard using conducting polymer electrodes on textiles. Adv. Mater. 28, 4485–4488 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Bao, Z. & Chen, X. Flexible and stretchable devices. Adv. Mater. 28, 4177–4179 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Ramuz, M., Tee, B. C. K., Tok, J. B. H. & Bao, Z. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 24, 3223–3227 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Zhang, L., Gao, M., Wang, R., Deng, Z. & Gui, L. Stretchable pressure sensor with leakage-free liquid-metal electrodes. Sensors (Switzerland) 19, 1316 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Lessing, J., Morin, S. A., Keplinger, C., Tayi, A. S. & Whitesides, G. M. Stretchable conductive composites based on metal wools for use as electrical vias in soft devices. Adv. Funct. Mater. 25, 1418–1425 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Sun, J. et al. Highly stretchable and ultrathin nanopaper composites for epidermal strain sensors. Nanotechnology 29, 355304 (2018).

    Article 

    Google Scholar
     

  • 12.

    Li, J. et al. Highly stretchable and sensitive strain sensor based on facilely prepared three-dimensional graphene foam composite. ACS Appl. Mater. Interfaces 8, 18954–18961 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Amjadi, M., Yoon, Y. J. & Park, I. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites. Nanotechnology 26, 375501 (2015).

    Article 

    Google Scholar
     

  • 14.

    Choong, C. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183–190 (2018).

    Article 

    Google Scholar
     

  • 15.

    Tian, L. et al. Flexible and stretchable 3ω sensors for thermal characterization of human skin. Adv. Funct. Mater. 27, 1–9 (2017).


    Google Scholar
     

  • 16.

    Vogt, D. M., Park, Y. L. & Wood, R. J. Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels. IEEE Sens. J. 13, 4056–4064 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 17.

    Kozaki, T. et al. Liquid-state optoelectronics using liquid metal. Adv. Electron. Mater. 6, 1–7 (2020).

    Article 

    Google Scholar
     

  • 18.

    Kim, J. et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv. 2, e1600418 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Jeong, Y. R. et al. A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Mater. 9, 1–8 (2017).


    Google Scholar
     

  • 20.

    Huang, X. et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10, 3083–3090 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Takei, K., Gao, W., Wang, C. & Javey, A. Physical and chemical sensing with electronic skin. Proc. IEEE 107, 2155–2167 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Yao, S. & Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6, 2345–2352 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Pang, Y. et al. Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 8, 26458–26462 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Obropta, E. W. & Newman, D. J. A comparison of human skin strain fields of the elbow joint for mechanical counter pressure space suit development. IEEE Aerosp. Conf. Proc. https://doi.org/10.1109/AERO.2015.7119176 (2015).

    Article 

    Google Scholar
     

  • 27.

    Gao, Y. et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv. Mater. 29, 1–8 (2017).

    ADS 

    Google Scholar
     

  • 28.

    Park, Y. L., Chen, B. R. & Wood, R. J. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sens. J. 12, 2711–2718 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Parameswaran, C. & Gupta, D. Low cost sponge based piezocapacitive sensors using a single step leavening agent mediated autolysis process. J. Mater. Chem. C 6, 5473–5481 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Wan, H. et al. Screen-printed soft triboelectric nanogenerator with porous PDMS and stretchable PEDOT:PSS electrode. J. Semicond. 40, 1–7 (2019).

    Article 

    Google Scholar
     

  • 31.

    Pinto, J. et al. Nanoporous PMMA foams with templated pore size obtained by localized in situ synthesis of nanoparticles and CO2 foaming. Polymer (Guildf). 124, 176–185 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Song, W. J. et al. Jabuticaba-inspired hybrid carbon filler/polymer electrode for use in highly stretchable aqueous Li-Ion batteries. Adv. Energy Mater. 8, 1–10 (2018).


    Google Scholar
     

  • 33.

    Zhu, B. et al. Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 10, 3625–3631 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Choong, C. L. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26, 3451–3458 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Park, H. et al. Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars. ACS Nano 9, 9974–9985 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Wang, R. et al. Effect of different binders on the electrochemical performance of metal oxide anode for lithium-ion batteries. Nanoscale Res. Lett. 12, 575 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Papp, J. K. et al. Poly(vinylidene fluoride) (PVDF) binder degradation in Li-O2 batteries: A consideration for the characterization of lithium superoxide. J. Phys. Chem. Lett. 8, 1169–1174 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Liu, W. et al. 3D porous sponge-inspired electrode for stretchable lithium-ion batteries. Adv. Mater. 28, 3578–3583 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *