CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Chao, Q. et al. On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel. Scr. Mater.141, 94–98 (2017).

    CAS 

    Google Scholar
     

  • 2.

    Chen, X., Li, J., Cheng, X., Wang, H. & Huang, Z. Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing. Mater. Sci. Eng. A315, 307–314 (2018).


    Google Scholar
     

  • 3.

    Cruz, V. et al. Electrochemical studies on the effect of residual stress on the corrosion of 316L manufactured by selective laser melting. Corros. Sci.164, 108314 (2019).


    Google Scholar
     

  • 4.

    Kong, D. et al. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochim. Acta.276, 293–303 (2018).

    CAS 

    Google Scholar
     

  • 5.

    Lodhi, M. J. K., Deen, K. M. & Haider, W. Corrosion behavior of additively manufactured 316L stainless steel in acidic media. Materialia2, 111–121 (2018).


    Google Scholar
     

  • 6.

    Macatangay, D. A., Thomas, S., Birbilis, N. & Kelly, R. G. Unexpected interface corrosion and sensitization susceptibility in additively manufactured austenitic stainless steel. Corros. J.74, 153–157 (2018).

    CAS 

    Google Scholar
     

  • 7.

    Melia, M. A., Nguyen, H.-D. A., Rodelas, J. M. & Schindelholz, E. J. Corrosion properties of 304L stainless steel made by directed energy deposition additive manufacturing. Corros. Sci.152, 20–30 (2019).

    CAS 

    Google Scholar
     

  • 8.

    Papula, S. et al. Selective laser melting of duplex stainless steel 2205: effect of post-processing heat treatment on microstructure, mechanical properties, and corrosion resistance. Materials12, 2468 (2019).

    CAS 

    Google Scholar
     

  • 9.

    Sander, G. et al. On the corrosion and metastable pitting characteristics of 316L stainless steel produced by selective laser melting. J. Electrochem. Soc.164, C250–C257 (2017).

    CAS 

    Google Scholar
     

  • 10.

    Schaller, R. F., Taylor, J. M., Rodelas, J. & Schindelholz, E. J. Corrosion properties of powder bed fusion additively manufactured 17-4 PH stainless steel. CORROSION73, 796–807 (2017).

    CAS 

    Google Scholar
     

  • 11.

    Trelewicz, J. R., Halada, G. P., Donaldson, O. K. & Manogharan, G. Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel. JOM68, 850–859 (2016).

    CAS 

    Google Scholar
     

  • 12.

    Wang, Y. & Chen, X. Investigation on the microstructure and corrosion properties of Inconel 625 alloy fabricated by wire arc additive manufacturing. Mater. Res. Express6, 106568 (2019).

    CAS 

    Google Scholar
     

  • 13.

    Kubacki, G. W., Brownhill, J. P. & Kelly, R. G. Comparison of atmospheric corrosion of additively manufactured and cast Al-10Si-Mg over a range of heat treatments. CORROSION75, 1527–1540 (2019).

    CAS 

    Google Scholar
     

  • 14.

    Revilla, R. I., Liang, J., Godet, S. & De Graeve, I. Local corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM. J. Electrochem. Soc.164, C27–C35 (2017).

    CAS 

    Google Scholar
     

  • 15.

    Zhang, B., Xiu, M., Tan, Y. T., Wei, J. & Wang, P. Pitting corrosion of SLM Inconel 718 sample under surface and heat treatments. Appl. Surf. Sci.490, 556–567 (2019).

    CAS 

    Google Scholar
     

  • 16.

    Stoudt, M. R., Ricker, R. E., Lass, E. A. & Levine, L. E. Influence of postbuild microstructure on the electrochemical behavior of additively manufactured 17-4 PH stainless steel. JOM69, 506–515 (2017).

    CAS 

    Google Scholar
     

  • 17.

    Sander, G. et al. Corrosion of additively manufactured alloys: a review. CORROSION74, 1318–1350 (2018).

    CAS 

    Google Scholar
     

  • 18.

    Cabrini, M. et al. Evaluation of corrosion resistance of alloy 625 obtained by laser powder bed fusion. J. Electrochem. Soc.166, C3399–C3408 (2019).

    CAS 

    Google Scholar
     

  • 19.

    Kazemipour, M., Mohammadi, M., Mfoumou, E. & Nasiri, A. M. Microstructure and corrosion characteristics of selective laser-melted 316L stainless steel: the impact of process-induced porosities. JOM71, 3230–3240 (2019).

    CAS 

    Google Scholar
     

  • 20.

    Schaller, R. F., Mishra, A., Rodelas, J. M., Taylor, J. M. & Schindelholz, E. J. The role of microstructure and surface finish on the corrosion of selective laser melted 304L. J. Electrochem. Soc.165, C234–C242 (2018).

    CAS 

    Google Scholar
     

  • 21.

    Ni, X. et al. Corrosion behavior of 316L stainless steel fabricated by selective laser melting under different scanning speeds. J. Mater. Eng. Perform.27, 3667–3677 (2018).

    CAS 

    Google Scholar
     

  • 22.

    Mohd Yusuf, S., Nie, M., Chen, Y., Yang, S. & Gao, N. Microstructure and corrosion performance of 316L stainless steel fabricated by selective laser melting and processed through high-pressure torsion. J. Alloy. Compd.763, 360–375 (2018).

    CAS 

    Google Scholar
     

  • 23.

    Kong, D. et al. The passivity of selective laser melted 316L stainless steel. Appl. Surf. Sci.504, 144495 (2020).


    Google Scholar
     

  • 24.

    Kong, D. et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes. J. Mater. Sci. Technol.35, 1499–1507 (2019).


    Google Scholar
     

  • 25.

    Prieto, C., Singer, M., Cyders, T. & Young, D. Investigation of pitting corrosion initiation and propagation of a type 316L stainless steel manufactured by the direct metal laser sintering process. CORROSION75, 140–143 (2018).


    Google Scholar
     

  • 26.

    Cabrini, M. et al. Corrosion behavior of AlSi10Mg alloy produced by laser powder bed fusion under chloride exposure. Corros. Sci.152, 101–108 (2019).

    CAS 

    Google Scholar
     

  • 27.

    Gharbi, O. et al. Microstructure and corrosion evolution of additively manufactured aluminium alloy AA7075 as a function of ageing. npj Mater. Degrad.3, 40 (2019).


    Google Scholar
     

  • 28.

    Lou, X., Andresen, P. L. & Rebak, R. B. Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior. J. Nucl. Mater.499, 182–190 (2018).

    CAS 

    Google Scholar
     

  • 29.

    Sun, S.-H. et al. Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting. Scr. Mater.159, 89–93 (2019).

    CAS 

    Google Scholar
     

  • 30.

    Hemmasian Ettefagh, A. & Guo, S. Electrochemical behavior of AISI316L stainless steel parts produced by laser-based powder bed fusion process and the effect of post annealing process. Addit. Manuf.22, 153–156 (2018).

    CAS 

    Google Scholar
     

  • 31.

    Dai, N. et al. Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros. Sci.111, 703–710 (2016).

    CAS 

    Google Scholar
     

  • 32.

    Leon, A. & Aghion, E. Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM). Mater. Charact.131, 188–194 (2017).

    CAS 

    Google Scholar
     

  • 33.

    Ni, C., Shi, Y. & Liu, J. Effects of inclination angle on surface roughness and corrosion properties of selective laser melted 316L stainless steel. Mater. Res. Express6, 036505 (2018).


    Google Scholar
     

  • 34.

    Fathi, P., Rafieazad, M., Duan, X., Mohammadi, M. & Nasiri, A. M. On microstructure and corrosion behaviour of AlSi10Mg alloy with low surface roughness fabricated by direct metal laser sintering. Corros. Sci.157, 126–145 (2019).

    CAS 

    Google Scholar
     

  • 35.

    Fathi, P., Mohammadi, M., Duan, X. & Nasiri, A. M. Effects of surface finishing procedures on corrosion behavior of DMLS-AlSi10Mg_200C alloy versus die-cast A360.1 aluminum. JOM71, 1748–1759 (2019).

    CAS 

    Google Scholar
     

  • 36.

    Burstein, G. T. & Pistorius, P. C. Surface roughness and the metastable pitting of stainless steel in chloride solutions. CORROSION51, 380–385 (1995).

    CAS 

    Google Scholar
     

  • 37.

    Hong, T. & Nagumo, M. Effect of surface roughness on early stages of pitting corrosion of Type 301 stainless steel. Corros. Sci.39, 1665–1672 (1997).

    CAS 

    Google Scholar
     

  • 38.

    Lee, S. M., Lee, W. G., Kim, Y. H. & Jang, H. Surface roughness and the corrosion resistance of 21Cr ferritic stainless steel. Corros. Sci.63, 404–409 (2012).

    CAS 

    Google Scholar
     

  • 39.

    Sasaki, K. & Burstein, G. T. The generation of surface roughness during slurry erosion-corrosion and its effect on the pitting potential. Corros. Sci.38, 2111–2120 (1996).

    CAS 

    Google Scholar
     

  • 40.

    Bagehorn, S., Wehr, J. & Maier, H. J. Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. Int. J. Fatigue102, 135–142 (2017).

    CAS 

    Google Scholar
     

  • 41.

    Galvele, J. R. Tafel’s law in pitting corrosion and crevice corrosion susceptibility. Corros. Sci.47, 3053–3067 (2005).

    CAS 

    Google Scholar
     

  • 42.

    Aboulkhair, N. T., Maskery, I., Tuck, C., Ashcroft, I. & Everitt, N. M. Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality. Mater. Des.104, 174–182 (2016).

    CAS 

    Google Scholar
     

  • 43.

    Denti, L., Bassoli, E., Gatto, A., Santecchia, E. & Mengucci, P. Fatigue life and microstructure of additive manufactured Ti6Al4V after different finishing processes. Mater. Sci. Eng., A755, 1–9 (2019).

    CAS 

    Google Scholar
     

  • 44.

    Shrestha, R., Simsiriwong, J. & Shamsaei, N. Fatigue behavior of additive manufactured 316L stainless steel parts: effects of layer orientation and surface roughness. Addit. Manuf.28, 23–38 (2019).

    CAS 

    Google Scholar
     

  • 45.

    Tian, Y., Tomus, D., Rometsch, P. & Wu, X. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Addit. Manuf.13, 103–112 (2017).

    CAS 

    Google Scholar
     

  • 46.

    Dutta, B., Babu, S. & Jared, B. H. Science, Technology and Applications of Metals in Additive Manufacturing. (Elsevier Science, 2019).

  • 47.

    Townsend, A., Senin, N., Blunt, L., Leach, R. K. & Taylor, J. S. Surface texture metrology for metal additive manufacturing: a review. Precis. Eng.46, 34–47 (2016).


    Google Scholar
     

  • 48.

    Wang, D., Mai, S., Xiao, D. & Yang, Y. Surface quality of the curved overhanging structure manufactured from 316-L stainless steel by SLM. Int. J. Adv. Manuf. Syst.86, 781–792 (2016).


    Google Scholar
     

  • 49.

    Qiu, C. et al. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater.96, 72–79 (2015).

    CAS 

    Google Scholar
     

  • 50.

    Strano, G., Hao, L., Everson, R. M. & Evans, K. E. Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Process. Technol.213, 589–597 (2013).

    CAS 

    Google Scholar
     

  • 51.

    Grimm, T., Wiora, G. & Witt, G. Characterization of typical surface effects in additive manufacturing with confocal microscopy. Surf. Topogr.: Metrol. Prop.3, 014001 (2015).


    Google Scholar
     

  • 52.

    Cabanettes, F. et al. Topography of as built surfaces generated in metal additive manufacturing: a multi scale analysis from form to roughness. Precis. Eng.52, 249–265 (2018).


    Google Scholar
     

  • 53.

    Fox, J. C., Moylan, S. P. & Lane, B. M. Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing. Proced. CIRP45, 131–134 (2016).


    Google Scholar
     

  • 54.

    Whip, B., Sheridan, L. & Gockel, J. The effect of primary processing parameters on surface roughness in laser powder bed additive manufacturing. Int. J. Adv. Manuf. Syst.103, 4411–4422 (2019).


    Google Scholar
     

  • 55.

    Bean, G. E., Witkin, D. B., McLouth, T. D., Patel, D. N. & Zaldivar, R. J. Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting. Addit. Manuf.22, 207–215 (2018).

    CAS 

    Google Scholar
     

  • 56.

    Koutiri, I., Pessard, E., Peyre, P., Amlou, O. & De Terris, T. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Technol.255, 536–546 (2018).

    CAS 

    Google Scholar
     

  • 57.

    Fox, J. C., Kim, F. H., Reese, Z. C. & Evans, C. In (eds Taylor, J. A. & Leach, R.), 2018 ASPE and euspen Summer Topical Meeting – Advancing Precision in Additive Manufacturing (2018).

  • 58.

    Kim, F. H., Moylan, S. P., Garboczi, E. J. & Slotwinski, J. A. Investigation of pore structure in cobalt chrome additively manufactured parts using X-ray computed tomography and three-dimensional image analysis. Addit. Manuf.17, 23–38 (2017).

    CAS 

    Google Scholar
     

  • 59.

    Alrbaey, K., Wimpenny, D. I., Al-Barzinj, A. A. & Moroz, A. Electropolishing of re-melted SLM stainless steel 316L parts using deep eutectic solvents. J. Mater. Eng. Perform. 25, 2836–2846 (2016)

  • 60.

    Baicheng, Z. et al. Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Mater. Des.116, 531–537 (2017).


    Google Scholar
     

  • 61.

    Rotty, C., Mandroyan, A., Doche, M. L. & Hihn, J. Y. Electropolishing of CuZn brasses and 316L stainless steels: Influence of alloy composition or preparation process (ALM vs. standard method). Surf. Coat. Technol.307, 125–135 (2016).

    CAS 

    Google Scholar
     

  • 62.

    Rotty, C. et al. Electrochemical superfinishing of cast and ALM 316L stainless steels in deep eutectic solvents: surface microroughness evolution and corrosion resistance. J. Electrochem. Soc.166, C468–C478 (2019).

    CAS 

    Google Scholar
     

  • 63.

    ur Rahman, Z., Deen, K. M., Cano, L. & Haider, W. The effects of parametric changes in electropolishing process on surface properties of 316L stainless steel. Appl. Surf. Sci.410, 432–444 (2017).

    CAS 

    Google Scholar
     

  • 64.

    Urlea, V. & Brailovski, V. Electropolishing and electropolishing-related allowances for IN625 alloy components fabricated by laser powder-bed fusion. Int. J. Adv. Manuf. Syst.92, 4487–4499 (2017).


    Google Scholar
     

  • 65.

    Urlea, V. & Brailovski, V. Electropolishing and electropolishing-related allowances for powder bed selectively laser-melted Ti-6Al-4V alloy components. J. Mater. Process. Technol.242, 1–11 (2017).

    CAS 

    Google Scholar
     

  • 66.

    Wu, Y.-C., Kuo, C.-N., Chung, Y.-C., Ng, C.-H. & Huang, J. C. Effects of electropolishing on mechanical properties and bio-corrosion of Ti6Al4V fabricated by electron beam melting additive manufacturing. Materials12, 1466 (2019).

    CAS 

    Google Scholar
     

  • 67.

    Zhang, Y. et al. Amorphous alloy strengthened stainless steel manufactured by selective laser melting: enhanced strength and improved corrosion resistance. Scr. Mater.148, 20–23 (2018).

    CAS 

    Google Scholar
     

  • 68.

    Wang, W. J., Yung, K. C., Choy, H. S., Xiao, T. Y. & Cai, Z. X. Effects of laser polishing on surface microstructure and corrosion resistance of additive manufactured CoCr alloys. Appl. Surf. Sci.443, 167–175 (2018).

    CAS 

    Google Scholar
     

  • 69.

    Bhaduri, D. et al. Laser polishing of 3D printed mesoscale components. Appl. Surf. Sci.405, 29–46 (2017).

    CAS 

    Google Scholar
     

  • 70.

    Bordatchev, E. V., Hafiz, A. M. K. & Tutunea-Fatan, O. R. Performance of laser polishing in finishing of metallic surfaces. Int. J. Adv. Manuf. Technol.73, 35–52 (2014).


    Google Scholar
     

  • 71.

    Hackel, L., Rankin, J. R., Rubenchik, A., King, W. E. & Matthews, M. Laser peening: a tool for additive manufacturing post-processing. Addit. Manuf.24, 67–75 (2018).

    CAS 

    Google Scholar
     

  • 72.

    Rosa, B., Mognol, P. & Hascoët, J.-y Laser polishing of additive laser manufacturing surfaces. J. Laser Appl.27, S29102 (2015).


    Google Scholar
     

  • 73.

    Tian, Y. et al. Material interactions in laser polishing powder bed additive manufactured Ti6Al4V components. Addit. Manuf.20, 11–22 (2018).

    CAS 

    Google Scholar
     

  • 74.

    Yung, K. C., Xiao, T. Y., Choy, H. S., Wang, W. J. & Cai, Z. X. Laser polishing of additive manufactured CoCr alloy components with complex surface geometry. J. Mater. Process. Technol.262, 53–64 (2018).

    CAS 

    Google Scholar
     

  • 75.

    Kumbhar, N. N. & Mulay, A. V. Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J. Inst. Eng. (India) Ser. C.99, 481–487 (2018).


    Google Scholar
     

  • 76.

    Pacquentin, W., Caron, N. & Oltra, R. Effect of microstructure and chemical composition on localized corrosion resistance of a AISI 304L stainless steel after nanopulsed-laser surface melting. Appl. Surf. Sci.356, 561–573 (2015).

    CAS 

    Google Scholar
     

  • 77.

    Boschetto, A., Bottini, L. & Veniali, F. Surface roughness and radiusing of Ti6Al4V selective laser melting-manufactured parts conditioned by barrel finishing. Int. J. Adv. Manuf. Syst.94, 2773–2790 (2018).


    Google Scholar
     

  • 78.

    Mohammadian, N., Turenne, S. & Brailovski, V. Surface finish control of additively-manufactured Inconel 625 components using combined chemical-abrasive flow polishing. J. Mater. Process. Technol.252, 728–738 (2018).

    CAS 

    Google Scholar
     

  • 79.

    Nagalingam, A. P. & Yeo, S. H. Controlled hydrodynamic cavitation erosion with abrasive particles for internal surface modification of additive manufactured components. Wear414–415, 89–100 (2018).


    Google Scholar
     

  • 80.

    Tan, K. L. & Yeo, S. H. Surface modification of additive manufactured components by ultrasonic cavitation abrasive finishing. Wear378–379, 90–95 (2017).


    Google Scholar
     

  • 81.

    Żebrowski, R. & Walczak, M. The effect of shot peening on the corrosion behaviour of Ti-6Al-4V alloy made by DMLS. Adv. Mater. Sci18, 43 (2018).


    Google Scholar
     

  • 82.

    Jamal, M. & Morgan, M. N. Design process control for improved surface finish of metal additive manufactured parts of complex build geometry. Inventions2, 36 (2017).


    Google Scholar
     

  • 83.

    Persenot, T., Martin, G., Dendievel, R., Buffiére, J.-Y. & Maire, E. Enhancing the tensile properties of EBM as-built thin parts: effect of HIP and chemical etching. Mater. Charact.143, 82–93 (2018).

    CAS 

    Google Scholar
     

  • 84.

    Łyczkowska, E., Szymczyk, P., Dybała, B. & Chlebus, E. Chemical polishing of scaffolds made of Ti–6Al–7Nb alloy by additive manufacturing. Arch. Civ. Mech. Eng.14, 586–594 (2014).


    Google Scholar
     

  • 85.

    Longhitano, G. A., Larosa, M. A., Munhoz, A. L. J., Zavaglia, C. Ad. C. & Ierardi, M. C. F. Surface finishes for Ti-6Al-4V alloy produced by direct metal laser sintering. Mater. Res.18, 838–842 (2015).

    CAS 

    Google Scholar
     

  • 86.

    Guo, J. et al. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Mater. Des.153, 211–220 (2018).

    CAS 

    Google Scholar
     

  • 87.

    Heiden, M. J. et al. Evolution of 316L stainless steel feedstock due to laser powder bed fusion process. Addit. Manuf.25, 84–103 (2019).

    CAS 

    Google Scholar
     

  • 88.

    Birnbaum, A. J., Steuben, J. C., Barrick, E. J., Iliopoulos, A. P. & Michopoulos, J. G. Intrinsic strain aging, Σ3 boundaries, and origins of cellular substructure in additively manufactured 316L. Addit. Manuf.29, 100784 (2019).


    Google Scholar
     

  • 89.

    Saeidi, K. Stainless steels fabricated by laser melting: Scaled-down structural hierarchies and microstructural heterogeneities. (Stockholm University, 2016).

  • 90.

    Saeidi, K., Kvetková, L., Lofaj, F. & Shen, Z. Austenitic stainless steel strengthened by the in situ formation of oxide nanoinclusions. RSC Adv.5, 20747–20750 (2015).

    CAS 

    Google Scholar
     

  • 91.

    Simonelli, M. et al. A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. Metall. Mater. Trans. A46A, 3842–3851 (2015).


    Google Scholar
     

  • 92.

    Jones, D. A. Principles and Prevention of Corrosion. (Prentice Hall, 1996).

  • 93.

    Abbasi Aghuy, A., Zakeri, M., Moayed, M. H. & Mazinani, M. Effect of grain size on pitting corrosion of 304L austenitic stainless steel. Corros. Sci.94, 368–376 (2015).

    CAS 

    Google Scholar
     

  • 94.

    Nazarov, A., Vivier, V., Vucko, F. & Thierry, D. Effect of tensile stress on the passivity breakdown and repassivation of AISI 304 stainless steel: a scanning kelvin probe and scanning electrochemical microscopy study. J. Electrochem. Soc.166, C3207–C3219 (2019).

    CAS 

    Google Scholar
     

  • 95.

    Luo, H., Su, H., Ying, G., Dong, C. & Li, X. Effect of cold deformation on the electrochemical behaviour of 304L stainless steel in contaminated sulfuric acid environment. Appl. Surf. Sci.425, 628–638 (2017).

    CAS 

    Google Scholar
     

  • 96.

    Kocijan, A. Donik, Č. & Jenko, M. Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions. Corros. Sci.49, 2083–2098 (2007).

    CAS 

    Google Scholar
     

  • 97.

    Pourbaix, M. Atlas of electrochemical equilibria in aqueous solutions. (National Association of Corrosion Engineers, 1974).

  • 98.

    Kummert, C. & Schmid, H.-J. In (ed. Beaman, J. J., Bourell, D. L., Crawford, R. H., Fish, S. & Seepersad, C. C.), Proc. 29th Annual International Solid Freeform Fabrication Symposium (2018).

  • 99.

    Antonysamy, A. A., Meyer, J. & Prangnell, P. B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting. Mater. Charact.84, 153–168 (2013).

    CAS 

    Google Scholar
     

  • 100.

    Ortiz Rios, C., Amine, T. & Newkirk, J. W. Tensile behavior in selective laser melting. Int. J. Adv. Manuf. Syst.96, 1187–1194 (2018).


    Google Scholar
     

  • 101.

    Rotty, C. et al. Comparison of electropolishing behaviours of TSC, ALM and cast 316L stainless steel in H3PO4/H2SO4. Surf. Inter.6, 170–176 (2017).

    CAS 

    Google Scholar
     

  • 102.

    Hashimoto, F. et al. Abrasive fine-finishing technology. CIRP Ann.65, 597–620 (2016).


    Google Scholar
     

  • 103.

    International, A. in ASTM A967/ASTM A967M-17 Standard Specification for Chemical Passivation Treatments for Stainless Steel Parts (ASTM International, West Conshohocken, 2017).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *