CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    Iverson, R. M. The physics of debris flows. Rev. Geophys. 35(3), 245–296 (1997).

    ADS 

    Google Scholar
     

  • 2.

    Blair, T. C. & McPherson, J. G. Processes and forms of alluvial fans. In Geomorphology of Desert Environments (eds Parsons, A. J. & Abrahams, A. D.) 413–467 (Springer, Dordrecht, 2009).


    Google Scholar
     

  • 3.

    De Haas, T., Kleinhans, M. G., Carbonneau, P. E., Rubensdotter, L. & Hauber, E. Surface morphology of fans in the high-Arctic periglacial environment of Svalbard: controls and processes. Earth Sci. Rev. 146, 163–182 (2015).

    ADS 

    Google Scholar
     

  • 4.

    Dowling, C. A. & Santi, P. M. Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Nat. Hazards 71(1), 203–227 (2014).


    Google Scholar
     

  • 5.

    Stoffel, M., Mendlik, T., Schneuwly-Bollschweiler, M. & Gobiet, A. Possible impacts of climate change on debris-flow activity in the Swiss Alps. Clim. Change 122(1–2), 141–155 (2014).

    ADS 

    Google Scholar
     

  • 6.

    Stoffel, M., Tiranti, D. & Huggel, C. Climate change impacts on mass movements—case studies from the European Alps. Sci. Total Environ. 493, 1255–1266 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Turkington, T., Remaître, A., Ettema, J., Hussin, H. & Westen, C. Assessing debris flow activity in a changing climate. Clim. Change 137(1–2), 293–305 (2016).

    ADS 

    Google Scholar
     

  • 8.

    De Haas, T. et al. Avulsions and the spatio-temporal evolution of debris-flow fans. Earth Sci. Rev. 177, 53–75 (2018).

    ADS 

    Google Scholar
     

  • 9.

    Hungr, O., McDougall, S. & Bovis, M. Entrainment of material by debris flows. In Debris-flow hazards and related phenomena (eds Jakob, M. & Hungr, O.) 135–158 (Springer, Berlin, 2005).


    Google Scholar
     

  • 10.

    Navratil, O. et al. High-frequency monitoring of debris-flow propagation along the Réal Torrent, Southern French Prealps. Geomorphology 201, 157–171 (2013).

    ADS 

    Google Scholar
     

  • 11.

    Theule, J. I., Liébault, F., Loye, A., Laigle, D. & Jaboyedoff, M. Sediment budget monitoring of debris-flow and bedload transport in the Manival Torrent, SE France. Natural Hazards Earth Syst Sci 12, 731–749 (2012).

    ADS 

    Google Scholar
     

  • 12.

    Theule, J. I., Liébault, F., Laigle, D., Loye, A. & Jaboyedoff, M. Channel scour and fill by debris flows and bedload transport. Geomorphology 243, 92–105 (2015).


    Google Scholar
     

  • 13.

    De Haas, T. & Van Woerkom, T. Bed scour by debris flows: experimental investigation of effects of debris-flow composition. Earth Surf. Proc. Land. 41(13), 1951–1966 (2016).

    ADS 

    Google Scholar
     

  • 14.

    Pérez, F. L. Matrix granulometry of catastrophic debris flows (December 1999) in central coastal Venezuela. CATENA 45, 163–183 (2001).


    Google Scholar
     

  • 15.

    Rickenmann, D. Empirical relationships for debris flows. Nat. Hazards 19(1), 47–77 (1999).


    Google Scholar
     

  • 16.

    Iverson, R. M., Schilling, S. P. & Vallance, J. W. Objective delineation of lahar-inundation hazard zones. Geol. Soc. Am. Bull. 110(8), 972–984 (1998).

    ADS 

    Google Scholar
     

  • 17.

    Griswold, J. P., & Iverson, R. M. Mobility statistics and automated hazard mapping for debris flows and rock avalanches. US Geological Survey Open-File Report 2007–5276 (2008).

  • 18.

    Pudasaini, S. P. A general two-phase debris flow model. J. Geophys. Res. Earth Surf. 117, F03010 (2012).

    ADS 

    Google Scholar
     

  • 19.

    Iverson, R. M. & George, D. L. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. Proc. R. Soc. Math. Phys. Eng. Sci. 470(2170), 20130819 (2014).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 20.

    Schraml, K., Thomschitz, B., McArdell, B. W., Graf, C. & Kaitna, R. Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Nat. Hazards Earth Syst. Sci. 15(7), 1483 (2015).

    ADS 

    Google Scholar
     

  • 21.

    McDougall, S. & Hungr, O. Dynamic modelling of entrainment in rapid landslides. Can. Geotech. J. 42, 1437–1448 (2005).


    Google Scholar
     

  • 22.

    Medina, V., Hürlimann, M. & Bateman, A. Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5, 127–142 (2008).


    Google Scholar
     

  • 23.

    Frank, F., McArdell, B. W., Huggel, C., & Vieli, A. The importance of erosion for debris flow runout modelling from applications to the Swiss Alps. Nat. Hazards Earth Syst. Sci. Discuss. 3(4), 2379–2417 (2015).

  • 24.

    Iverson, R. M. & Ouyang, C. Entrainment of bed material by earth-surface mass flows: review and reformulation of depth-integrated theory. Rev. Geophys. 53(1), 27–58 (2015).

    ADS 

    Google Scholar
     

  • 25.

    Iverson, R. M. et al. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat. Geosci. 4(2), 116 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Lanzoni, S., Gregoretti, C. & Stancanelli, L. M. Coarse-grained debris flow dynamics on erodible beds. J. Geophys. Res. Earth Surf. 122(3), 592–614 (2017).

    ADS 

    Google Scholar
     

  • 27.

    Li, P., Hu, K. & Wang, X. Debris flow entrainment rates in non-uniform channels with convex and concave slopes. J. Hydraul. Res. 56, 1–12 (2017).


    Google Scholar
     

  • 28.

    Lu, P. Y., Yang, X. G., Xu, F. G., Hou, T. X. & Zhou, J. W. An analysis of the entrainment effect of dry debris avalanches on loose bed materials. SpringerPlus 5(1), 1621 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Schürch, P., Densmore, A. L., Rosser, N. J. & McArdell, B. W. Dynamic controls on erosion and deposition on debris-flow fans. Geology 39(9), 827–830 (2011).

    ADS 

    Google Scholar
     

  • 30.

    McCoy, S. W. et al. Sediment entrainment by debris flows: in situ measurements from the headwaters of a steep catchment. J. Geophys. Res. Earth Surf. 117, F03016 (2012).

    ADS 

    Google Scholar
     

  • 31.

    Berger, C., McArdell, B. W. & Schlunegger, F. Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. J. Geophys. Res. Earth Surf. 116, F01002 (2011).

    ADS 

    Google Scholar
     

  • 32.

    Dietrich, A. & Krautblatter, M. Deciphering controls for debris-flow erosion derived from a LiDAR-recorded extreme event and a calibrated numerical model (Roßbichelbach, Germany). Earth Surf. Proc. Land. 44(6), 1346–1361 (2019).

    ADS 

    Google Scholar
     

  • 33.

    Marchand, A. Les Torrents des alpes, in Revue des eaux et forêts, annales forestières, Paris, no. 10, 77–95 (1871).

  • 34.

    Lichtenhahn, C. Zwei Betonmauern: die Geschieber ückhaltesperre am Illgraben (Wallis). In Internationales Symposium Interpraevent: Villach, Austria, F.f.v. Hochwasserbekämpfung, 451–456 (1971).

  • 35.

    Bennett, G. L., Molnar, P., McArdell, B. W. & Burlando, P. A probabilistic sediment cascade model of sediment transfer in the Illgraben. Water Resour. Res. 50(2), 1225–1244 (2014).

    ADS 

    Google Scholar
     

  • 36.

    Hürlimann, M., Rickenmann, D. & Graf, C. Field and monitoring data of debris-flow events in the Swiss Alps. Can. Geotechn. J. 40, 161–175. https://doi.org/10.1139/t02-087 (2003).

    Article 

    Google Scholar
     

  • 37.

    McArdell, B. W., Bartelt, P. & Kowalski, J. Field observations of basal forces and fluid pore pressure in a debris flow. Geophys. Res. Lett. 34, L07406. https://doi.org/10.1029/2006GL029183 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Schlunegger, F. et al. Limits of sediment transfer in an alpine debris-flow catchment, Illgraben, Switzerland. Quatern. Sci. Rev. 28(11–12), 1097–1105 (2009).

    ADS 

    Google Scholar
     

  • 39.

    Jaeggi, M. N. R. & Pellandini, S. Torrent check dams as a control measure for debris flows. In Recent Developments on Debris Flows (eds Armanini, A. & Michiue, M.) 186–207 (Springer, Berlin, 1997).


    Google Scholar
     

  • 40.

    Piton, G. et al. Why do we build check dams in Alpine streams? An historical perspective from the French experience. Earth Surf. Proc. Land. 42(1), 91–108 (2017).

    ADS 

    Google Scholar
     

  • 41.

    Zeng, Q. L., Yue, Z. Q., Yang, Z. F. & Zhang, X. J. A case study of long-term field performance of check-dams in mitigation of soil erosion in Jiangjia stream, China. Environ. Geol. 58, 897–911 (2009).

    ADS 

    Google Scholar
     

  • 42.

    Chen, J., He, Y. & Wei, F. Debris flow erosion and deposition in Jiangjia Gully, Yunnan, China. Environ. Geol. 48, 771–777 (2005).

    ADS 

    Google Scholar
     

  • 43.

    Iverson, R. M. Elementary theory of bed-sediment entrainment by debris flows and avalanches. J. Geophys. Res. Earth Surf. 117, F03006 (2012).

    ADS 

    Google Scholar
     

  • 44.

    Fagents, S. A. & Baloga, S. M. Toward a model for the bulking and debulking of lahars. J. Geophys. Res. Solid Earth 111, B10201 (2006).

    ADS 

    Google Scholar
     

  • 45.

    Rickenmann, D., Weber, D., & Stepanov, B. Erosion by debris flows in field and laboratory experiments. In Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings of 5th International Conference, Padua, Italy, 883–894 (2003).

  • 46.

    Conway, S., Decaulne, A., Balme, M., Murray, J. & Towner, M. A new approach to estimating hazard posed by debris flows in the Westfjords of Iceland. Geomorphology 114, 556–572 (2010).

    ADS 

    Google Scholar
     

  • 47.

    Han, Z., Chen, G., Li, Y. & He, Y. Assessing entrainment of bed material in a debris-flow event: a theoretical approach incorporating Monte Carlo method. Earth Surf. Proc. Land. 40, 1877–1890 (2015).

    ADS 

    Google Scholar
     

  • 48.

    Stock, J. & Dietrich, W. E. Valley incision by debris flows: evidence of a topographic signature. Water Resour. Res. 39(4), 1089 (2003).

    ADS 

    Google Scholar
     

  • 49.

    Yohannes, B., Hsu, L., Dietrich, W. E. & Hill, K. M. Boundary stresses due to impacts from dry granular flows. J. Geophys. Res. Earth Surf. 117, F02027 (2012).

    ADS 

    Google Scholar
     

  • 50.

    Hsu, L., Dietrich, W. E. & Sklar, L. S. Experimental study of bedrock erosion by granular flows. J. Geophys. Res. Earth Surf. 113, F02001 (2008).

    ADS 

    Google Scholar
     

  • 51.

    Major, J. J. Depositional processes in large-scale debris-flow experiments. J. Geol. 105(3), 345–366 (1997).

    ADS 

    Google Scholar
     

  • 52.

    Carbonneau, P. E. & Dietrich, J. T. Cost-effective non-metric photogrammetry from consumer-grade sUAS: implications for direct georeferencing of structure from motion photogrammetry. Earth Surf. Proc. Land. 42(3), 473–486 (2017).

    ADS 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *