CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Lehane, M. J. Feeding preferences of bloodsucking insects in The Biology of Blood-sucking in Insects 12–24 (Cambridge University Press, 2005).

  • 2.

    Detinova, T. S. Age structure of insect populations of medical importance. Annu. Rev. Entomol. 13, 427–450 (1968).


    Google Scholar
     

  • 3.

    Tyndale-Biscoe, M. Age-grading methods in adult insects: a review. Bull. Entomol. Res. 74, 341–377 (1984).


    Google Scholar
     

  • 4.

    McGraw, J. B. & Caswell, H. Estimation of individual fitness from life-history data. Am. Nat. 147, 47–64 (1996).


    Google Scholar
     

  • 5.

    Saunders, D. S. Determination of physiological age for female Glossina morsitans. Nature 186, 651–651 (1960).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Hayes, E. J. & Wall, R. Age-grading adult insects: a review of techniques. Physiol. Entomol. 24, 1–10 (1999).


    Google Scholar
     

  • 7.

    Robertson, C. W. The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes. J. Morphol. 59, 351–399 (1936).


    Google Scholar
     

  • 8.

    Neville, A. C. Daily growth layers for determining the age of grasshopper populations. Oikos 14, 1–8 (1963).


    Google Scholar
     

  • 9.

    Schlein, J. & Gratz, N. G. Age determination of some flies and mosquitos by daily growth layers of skeletal apodemes. Bull. World Health Organ. 47, 71–76 (1972).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Bainbridge, S. P. & Bownes, M. Staging the metamorphosis of Drosophila melanogaster. J. Embryol. Exp. Morphol. 66, 57–80 (1981).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Tyndale-Biscoe, M. & Kitching, R. L. Cuticular bands as age criteria in the sheep blowfly Lucilia cuprina (Wied.) (Diptera, Calliphoridae). Bull. Entomol. Res. 64, 161–174 (1974).


    Google Scholar
     

  • 12.

    Reinhardt, K., Köhler, G., Webb, S. & Childs, D. Field mating rate of female meadow grasshoppers, Chorthippus parallelus, estimated from sperm counts. Ecol. Entomol. 32, 637–642 (2007).


    Google Scholar
     

  • 13.

    Detinova, T. S., Bertram, D. S. & World health organization. Age-grouping methods in diptera of medical importance, with special reference to some vectors of malaria / T. S. Detinova; [with] an Annex on the ovary and ovarioles of mosquitos (with glossary) by D. S. Bertram https://apps.who.int/iris/handle/10665/41724 (1962).

  • 14.

    Moon, R. D. & Krafsur, E. S. Pterin quantity and gonotrophic stage as indicators of age in Musca autumnalis (Diptera: Muscidae). J. Med. Entomol. 32, 673–684 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Ziegler, I. & Harmsen, R. The biology of pteridines in insects. Adv. In Insect Phys. 6, 139–203 (1970).


    Google Scholar
     

  • 16.

    Tomic-Carruthers, N., Robacker, D. C. & Mangan, R. L. Identification and age-dependance of pteridines in the head of adult mexican fruit fly, Anastrepha ludens. J. Insect Physiol. 42, 359–366 (1996).

    CAS 

    Google Scholar
     

  • 17.

    Brown, D. J. Fused pyrimidines: Pteridines in Chemistry of Heterocyclic Compounds (ed. Brown, D. J.) 1–730 (Wiley, 1988).

  • 18.

    Bel, Y., Porcar, M., Socha, R., Němec, V. & Ferré, J. Analysis of pteridines in Pyrrhocoris apterus (L.) (Heteroptera, Pyrrhocoridae) during development and in body-color mutants. Arch. Insect Biochem. Physiol. 34, 83–98 (1997).

    CAS 

    Google Scholar
     

  • 19.

    Pfleiderer, W. Pteridines in Comprehensive Heterocyclic Chemistry 263–327 (Elsevier, 1984).

  • 20.

    Blau, N. & Thöny, B. Pterins and related enzymes in Laboratory Guide to the Methods in Biochemical Genetics 665–701 (Springer Berlin Heidelberg, 2008).

  • 21.

    Hevener, K. E. et al. Structural studies of pterin-based inhibitors of dihydropteroate synthase. J. Med. Chem. 53, 166–177 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Penilla, R. P., Rodríguez, M. H., López, A. D., Viader-Salvadó, J. M. & Sánchez, C. N. Pteridine concentrations differ between insectary-reared and field-collected Anopheles albimanus mosquitoes of the same physiological age. Med. Vet. Entomol. 16, 225–234 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Bernhardt, V. et al. Quantitative pteridine fluorescence analysis: A possible age-grading technique for the adult stages of the blow fly Calliphora vicina (Diptera: Calliphoridae). J. Insect Physiol. 98, 356–359 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Harmsen, R. Identification of fluorescing and u.v. absorbing substances in Pieris brassicae L. J. Insect Physiol. 12, 23–30 (1966).

    CAS 

    Google Scholar
     

  • 25.

    Krafsur, E. S., Rosales, A. L., Robison-Cox, J. F. & Turner, J. P. Age structure of horn fly (Diptera: Muscidae) populations estimated by pterin concentrations. J. Med. Entomol. 29, 678–686 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Tomic-Carruthers, N., Mangan, R. & Carruthers, R. Age estimation of mexican fruit fly (Diptera: Tephritidae) based on accumulation of pterins. J. Econ. Entomol. 95, 1319–1325 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Parravani, A. et al. Seasonal abundance of the stable fly Stomoxys calcitrans in southwest England. Med. Vet. Entomol. 33, 485–490 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Pfleiderer, W. Bicyclic 6-6 systems: Pteridines in Comprehensive Heterocyclic Chemistry II 679–736 (Elsevier, 1996).

  • 29.

    Mail, T. S., Chadwick, J. & Lehane, M. J. Determining the age of adults of Stomoxys calcitrans (L.) (Diptera: Muscidae). Bull. Entomol. Res. 73, 501–525 (1983).


    Google Scholar
     

  • 30.

    Zhu, G. H., Ye, G. Y., Li, K., Hu, C. & Xu, X. H. Determining the age of adult flesh flies, Boettcherisca peregrina, using pteridine fluorescence. Med. Vet. Entomol. 27, 59–63 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Lehane, M. J. & Mail, T. S. Determining the age of adult male and female Glossina morsitans morsitans using a new technique. Ecol. Entomol. 10, 219–224 (1985).


    Google Scholar
     

  • 32.

    McIntyre, G. S. & Gooding, R. H. Pteridine accumulation in Musca domestica. J. Insect Physiol. 41, 357–368 (1995).

    CAS 

    Google Scholar
     

  • 33.

    Nisshanthini, S. D. Evaluation of anticancer efficacy of 6-propinyl pterin characterized from cyanide untilizing bacterium Bacillus subtilis. (Bharathiar University, 2012).

  • 34.

    Handschin, G. Entwicklungs- und organspezifisches verteilungsmuster der pterine bei einem wildstamm und bei der mutante rosy2 von Drosophila melanogaster. Dev. Biol. 3, 115–139 (1961).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Mail, T. S. & Lehane, M. J. Characterisation of pigments in the head capsule of the adult stablefly Stomoxys calcitrans. Entomol. Exp. Appl. 46, 125–131 (1988).


    Google Scholar
     

  • 36.

    Lardeux, F., Ung, A. & Chebret, M. Spectrofluorometers are not adequate for aging Aedes and Culex (Diptera: Culicidae) using pteridine fluorescence. J. Med. Entomol. 37, 769–773 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Bartel, A. H., Hudson, B. W. & Craig, R. Pteridines in the milkweed bug, Oncopeltus fasciatus (Dallas): I. Identification and localization. J. Insect Physiol. 2, 348–354 (1958).

    CAS 

    Google Scholar
     

  • 38.

    Descimon, H. Les ptérines des Pieridae (Lepidoptera) et leur biosynthèse: I — Identification des principales ptérines de Colias croceus (Fourcroy) et de quelques autres espèces de Pieridae. Biochimie 53, 407–418 (1971).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Ferré, J., Silva, F. J., Real, M. D. & Ménsua, J. L. Pigment patterns in mutants affecting the biosynthesis of pteridines and xanthommatin in Drosophila melanogaster. Biochem. Genet. 24, 545–569 (1986).

    PubMed 

    Google Scholar
     

  • 40.

    Porcar, M., Bel, Y., Socha, R., Němec, V. & Ferré, J. Identification of pteridines in the firebug, Pyrrhocoris apterus (L.) (Heteroptera, Pyrrhocoridae) by high-performance liquid chromatography. J. Chromatogr. A 724, 193–197 (1996).

    CAS 

    Google Scholar
     

  • 41.

    Merlini, L. & Nasini, G. Insect pigments—IV. Pteridines and colour in some Hemiptera. J. Insect Physiol. 12, 123–127 (1966).

    CAS 

    Google Scholar
     

  • 42.

    Murata, S., Ichinose, H. & Urano, F. Tetrahydrobiopterin and related biologically important pterins in Bioactive Heterocycles II 127–171 (Springer Berlin Heidelberg, 2007).

  • 43.

    Krajíček, J. et al. Capillary electrophoresis of pterin derivatives responsible for the warning coloration of Heteroptera. J. Chromatogr. A 1336, 94–100 (2014).

    PubMed 

    Google Scholar
     

  • 44.

    Becker, E. Über das pterinpigment bei insekten und die färbung und zeichnung von vespa im besonderem. Zeitschrift für Morphol. und Ökologie der Tiere 32, 672–751 (1937).


    Google Scholar
     

  • 45.

    Egelhaaf, A. Photolabile fluoreszenzstoffe bei Ephestia kuhniella. Naturwissenschaften 43, 309 (1956).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Edalat, H., Akhoundi, M. & Basseri, H. Age-dependance of pteridines in the malaria vector, Anopheles stephensi. Pteridines 28, 157–161 (2017).

    CAS 

    Google Scholar
     

  • 47.

    Ikan, R. & Ishay, J. Pteridines and purines of the queens of the oriental hornet, Vespa orientalis F. J. Insect Physiol. 13, 159–162 (1967).

    CAS 

    Google Scholar
     

  • 48.

    Robson, S. & Crozier, R. H. An evaluation of two biochemical methods of age determination in insects (pteridines and lipofuscins) using the ant Polyrhachis sexpinosa Latrielle (Hymenoptera: Formicidae). Aust. J. Entomol. 48, 102–106 (2009).


    Google Scholar
     

  • 49.

    Martín Tornero, E., Durán Merás, I. & Espinosa-Mansilla, A. HPLC determination of serum pteridine pattern as biomarkers. Talanta 128, 319–326 (2014).

    PubMed 

    Google Scholar
     

  • 50.

    Martín-Tornero, E., Gómez, D. G., Durán-Merás, I. & Espinosa-Mansilla, A. Development of an HPLC-MS method for the determination of natural pteridines in tomato samples. Anal. Methods 8, 6404–6414 (2016).


    Google Scholar
     

  • 51.

    Basu, P. & Burgmayer, S. J. N. Pterin chemistry and its relationship to the molybdenum cofactor. Coord. Chem. Rev. 255, 1016–1038 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Murr, C. et al. Neopterin is an independent prognostic variable in females with breast cancer. Clin. Chem. 45, 1998–2004 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Plata-Nazar, K. et al. Reference standard of serum neopterin concentration in healthy children. Pteridines 18, 19–24 (2007).

    CAS 

    Google Scholar
     

  • 54.

    Lehane, M. J., Chadwick, J., Howe, M. A. & Mail, T. S. Improvements in the pteridine method for determining age in adult male and female Stomoxys calcitrans (Diptera: Muscidae). J. Econ. Entomol. 79, 1714–1719 (1986).

    CAS 

    Google Scholar
     

  • 55.

    Vargas-Lowman, A. et al. Cooption of the pteridine biosynthesis pathway underlies the diversification of embryonic colors in water striders. Proc. Natl. Acad. Sci. 116, 19046–19054, https://doi.org/10.1073/pnas.1908316116 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 56.

    Robson, S. K., Vickers, M., Blows, M. W. & Crozier, R. H. Age determination in individual wild-caught Drosophila serrata using pteridine concentration. J. Exp. Biol. 209, 3155–3163 (2006).

    PubMed 

    Google Scholar
     

  • 57.

    Sheehan, M. J., Jinn, J. & Tibbetts, E. A. Coevolution of visual signals and eye morphology in polistes paper wasps. Biol. Lett. 10, 20140254, https://doi.org/10.1098/rsbl.2014.0254 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Perl, C. D. & Niven, J. E. Differential scaling within an insect compound eye. Biol. Lett. 12, 20160042, https://doi.org/10.1242/jeb.082818 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Tomšíková, H., Tomšík, P., Solich, P. & Nováková, L. Determination of pteridines in biological samples with an emphasis on their stability. Bioanalysis 5, 2307–2326 (2013).

    PubMed 

    Google Scholar
     

  • 60.

    Zvarik, M., Martinicky, D., Hunakova, L. & Sikurova, L. Differences in pteridine urinary levels in patients with malignant and benign ovarian tumors in comparison with healthy individuals. J. Photochem. Photobiol. B Biol. 153, 191–197 (2015).

    CAS 

    Google Scholar
     

  • 61.

    Bel, Y. & Ferré, J. Regulation of pteridine biosynthesis and aromatic amino acid hydroxylation in Drosophila melanogaster. Biochem. Genet. 27, 59–76 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Hudson, B. W., Bartel, A. H. & Craig, R. Pteridines in the milkweed bug, Oncopeltus fasciatus (Dallas)—II: Quantitative determination of pteridine content of tissues during growth. J. Insect Physiol. 3, 63–73 (1959).

    CAS 

    Google Scholar
     

  • 63.

    Noble, R. M. & Walker, P. W. Pteridine compounds in adults of the pink-spotted bollworm, Pectinophora scutigera. Entomol. Exp. Appl. 57, 77–83 (1990).

    CAS 

    Google Scholar
     

  • 64.

    Balvín, O., Munclinger, P., Kratochvíl, L. & Vilímová, J. Mitochondrial DNA and morphology show independent evolutionary histories of bedbug Cimex lectularius (Heteroptera: Cimicidae) on bats and humans. Parasitol. Res. 111, 457–469 (2012).

    PubMed 

    Google Scholar
     

  • 65.

    Roth, S. et al. Bedbugs evolved before their bat hosts and did not co-speciate with ancient humans. Curr. Biol. 29, 1847–1853.e4, https://doi.org/10.1016/j.cub.2019.04.048 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 66.

    Wawrocka, K. & Bartonička, T. Two different lineages of bedbug (Cimex lectularius) reflected in host specificity. Parasitol. Res. 112, 3897–3904 (2013).

    PubMed 

    Google Scholar
     

  • 67.

    Aak, A. & Rukke, B. A. Bed bugs, their blood sources and life history parameters: a comparison of artificial and natural feeding. Med. Vet. Entomol. 28, 50–59 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Ferré, J., Silva, F. J., Real, M. D. & Ménsua, J. L. Comparative study of the eye colour mutants of Drosophila melanogaster: quantification of the eye-pigment and related metabolites in Chemistry and Biology of Pteridines: Proceedings (eds. Kisliuk, R. L. & Brown, G. M.) 669–673 (Elsevier/North-Holland, 1979).

  • 69.

    Allegri, G. et al. Determination of six pterins in urine by LC-MS/MS. Bioanalysis 4, 1739–1746 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Bílková, Z., Adámková, M., Albrecht, T. & Šimek, Z. Determination of testosterone and corticosterone in feathers using liquid chromatography-mass spectrometry. J. Chromatogr. A 1590, 96–103 (2019).

    PubMed 

    Google Scholar
     

  • 71.

    R Core Team. R: A language and environment for statistical computing https://www.r-project.org (2019).

  • 72.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models https://cran.r-project.org/package=nlme (2019).

  • 73.

    Wickham, H. ggplot2: Elegant graphics for data analysis https://ggplot2.tidyverse.org (2016).

  • 74.

    StatSoft Inc. STATISTICA (data analysis software system) http://www.statsoft.com (2013).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *