CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Belkaid, Y. & Segre, J. A. Dialogue between skin microbiota and immunity. Science346, 954–959 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Cogen, A. L., Nizet, V. & Gallo, R. L. Skin microbiota: a source of disease or defence? Br. J. Dermatol.158, 442–455 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Kumar, A. & Chordia, N. Role of microbes in human health. Appl. Microbiol. Open Access.13, 1–3 (2017).


    Google Scholar
     

  • 4.

    Radeck, J. et al. Anatomy of the bacitracin resistance network in Bacillus subtilis. Mol. Microbiol.100, 607–620 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol.16, 143–155 (2011).


    Google Scholar
     

  • 6.

    Grice, E. A. The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease. Semin. Cutan. Med. Surg.33, 98–103 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Gonzalez, D. J. et al. Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology157, 2485–2492 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol.8, 15–25 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol.29, R521–R537 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Stubbendieck, R. M. & Straight, P. D. Multifaceted interfaces of bacterial competition. J. Bacteriol.198, 2145–2155 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Hegarty, J. W., Guinane, C. M., Ross, R. P., Hill, C. & Cotter, P. D. Bacteriocin production: a relatively unharnessed probiotic trait? F1000Research.5, 2587 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Schluter, J., Nadell, C. D., Bassler, B. L. & Foster, K. R. Adhesion as a weapon in microbial competition. ISME J.9, 139–149 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol.9, 1636 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Caulier, S. et al. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol.10, 302 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Serra, C. R., Earl, A. M., Barbosa, T. M., Kolter, R. & Henriques, A. O. Sporulation during growth in a gut isolate of Bacillus subtilis. J. Bacteriol.196, 4184–4196 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Petruk, G., Donadio, G., Lanzilli, M., Isticato, R. & Monti, D. M. Alternative use of Bacillus subtilis spores: protection against environmental oxidative stress in human normal keratinocytes. Sci. Rep.8, 1745 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Wilson, M. The skin and its indigenous microbiota. In Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease. 51–106 (Cambridge University Press, Cambridge, 2004).

  • 18.

    Ara, K. et al. Foot odor due to microbial metabolism and its control. Can. J. Microbiol.52, 357–364 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Otto, M. Staphylococcus epidermidis—the ‘accidental’ pathogen. Nat. Rev. Microbiol.7, 555–567 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Schoenfelder, S. M. K. et al. Success through diversity—how Staphylococcus epidermidis establishes as a nosocomial pathogen. Int. J. Med. Microbiol.300, 380–386 (2010).

    PubMed 

    Google Scholar
     

  • 21.

    Oliveira, N. M. et al. Biofilm formation as a response to ecological competition. PLoS Biol.13, e1002191 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Lopez, D., Vlamakis, H. & Kolter, R. Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol. Rev.33, 152–163 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Calvio, C. et al. Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon. J. Bacteriol.187, 5356–5366 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    van Gestel, J., Vlamakis, H. & Kolter, R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol.13, e1002141 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Kinsinger, R. F., Shirk, M. C. & Fall, R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol.185, 5627–5631 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Kinsinger, R. F., Kearns, D. B., Hale, M. & Fall, R. Genetic requirements for potassium ion-dependent colony spreading in Bacillus subtilis. J. Bacteriol.187, 8462–8469 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Ogran, A. et al. The plant host induces antibiotic production to select the most-beneficial colonizers. Appl. Environ. Microbiol.85, e00512–e00519 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov.12, 371–387 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Stubbendieck, R. M. & Straight, P. D. Escape from lethal bacterial competition through coupled activation of antibiotic resistance and a mobilized subpopulation. PLoS Genet.11, e1005722 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Özcengiz, G. & Öğülür, I. Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. N. Biotechnol.32, 612–619 (2015).

    PubMed 

    Google Scholar
     

  • 31.

    Rosenberg, G. et al. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. npj Biofilms Microbiomes.2, 15027 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Kearns, D. B. A field guide to bacterial swarming motility. Nat. Rev. Microbiol.8, 634–644 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Veening, J. W. et al. Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol. Syst. Biol.4, 184 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Amati, G., Bisicchia, P. & Galizzi, A. DegU-P represses expression of the motility fla-che operon in Bacillus subtilis. J. Bacteriol.186, 6003–6014 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Verhamme, D. T., Murray, E. J. & Stanley-Wall, N. R. DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J. Bacteriol.191, 100–108 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Marlow, V. L. et al. Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm. J. Bacteriol.196, 16–27 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Newman, J. A., Rodrigues, C. & Lewis, R. J. Molecular basis of the activity of SinR Protein, the master regulator of biofilm formation in Bacillus subtilis. J. Biol. Chem.288, 10766–10778 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. & Kolter, R. Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol.11, 157–168 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Kearns, D. B., Chu, F., Branda, S. S., Kolter, R. & Losick, R. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol.55, 739–749 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Wu, S. C. et al. Functional production and characterization of a fibrin-specific single-chain antibody fragment from Bacillus subtilis: Effects of molecular chaperones and a wall-bound protease on antibody fragment production. Appl. Environ. Microbiol.68, 3261–3269 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Kenig, M. & Abraham, E. P. Antimicrobial activities and antagonists of bacilysin and anticapsin. J. Gen. Microbiol.94, 37–45 (1976).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Ertekin, O. et al. Analysis of a bac operon-silenced strain suggests pleiotropic effects of bacilysin in Bacillus subtilis. J. Microbiol.58, 297–313 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Mariappan, A., Makarewicz, O., Chen, X. H. & Borriss, R. Two-component response regulator DegU controls the expression of bacilysin in plant-growth-promoting bacterium Bacillus amyloliquefaciens FZB42. J. Mol. Microbiol. Biotechnol.22, 114–125 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Verhamme, D. T., Kiley, T. B. & Stanley-Wall, N. R. DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol. Microbiol.65, 554–568 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Rajavel, M., Mitra, A. & Gopal, B. Role of Bacillus subtilis BacB in the synthesis of bacilysin. J. Biol. Chem.284, 31882–31892 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Dahl, M. K., Msadek, T., Kunst, F. & Rapoport, G. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J. Bacteriol.173, 2539–2347 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Lasa, I. & Penadés, J. R. Bap: a family of surface proteins involved in biofilm formation. Res. Microbiol.157, 99–107 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Perez, T. D. & Nelson, W. J. Cadherin adhesion: mechanisms and molecular interactions. Handb. Exp. Pharmacol.165, 3–21 (2004).

    CAS 

    Google Scholar
     

  • 49.

    Mhatre, E. et al. Presence of calcium lowers the expansion of Bacillus subtilis colony biofilms. Microorganisms5, 7 (2017).

    PubMed Central 

    Google Scholar
     

  • 50.

    Chiller, K., Selkin, B. A. & Murakawa, G. J. Skin microflora and bacterial infections of the skin. J. Investig. Dermatol. Symp. Proc.6, 170–174 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Claudel, J. P. et al. Staphylococcus epidermidis: a potential new player in the physiopathology of acne? Dermatology235, 287–294 (2019).

    PubMed 

    Google Scholar
     

  • 52.

    Hilton, M. D., Alaeddinoglu, N. G. & Demain, A. L. Bacillus subtilis mutant deficient in the ability to produce the dipeptide antibiotic bacilysin: isolation and mapping of the mutation. J. Bacteriol.170, 1018–1020 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Steinberg, N. et al. The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within Bacillus subtilis biofilms. Sci. Signal.13, eaaw8905 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Gallegos-Monterrosa, R. et al. Lysinibacillus fusiformis M5 induces increased complexity in Bacillus subtilis 168 colony biofilms via hypoxanthine. J. Bacteriol.199, e00204–e00217 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Tecon, R., Ebrahimi, A., Kleyer, H., Levi, S. E. & Or, D. Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces. Proc. Natl Acad. Sci. USA115, 9791–9796 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Rosier, R. L. & Langkilde, T. Behavior under risk: how animals avoid becoming dinner. Nat. Educ. Knowl.2, 8 (2011).


    Google Scholar
     

  • 57.

    Arnott, G. & Elwood, R. W. Assessment of fighting ability in animal contests. Anim. Behav.77, 991–1004 (2009).


    Google Scholar
     

  • 58.

    Johnson, D. D. P. & Toft, M. D. Grounds for war: the evolution of territorial conflict. Int. Secur.38, 7–38 (2014).


    Google Scholar
     

  • 59.

    Zhao, X. & Kuipers, O. P. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics.17, 882 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Landy, M., Warren, G. H., Rosenmanm, S. B. & Colio, L. G. Bacillomycin: an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc. Soc. Exp. Biol. Med.67, 539–541 (1948).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Li, X., Yuan, C., Xing, L. & Humbert, P. Topographical diversity of common skin microflora and its association with skin environment type: An observational study in Chinese women. Sci. Rep.7, 18046 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Madden, T. The BLAST Sequence Analysis Tool. 2013 Mar 15. In: The NCBI Handbook [Internet]. 2nd edn. (National Center for Biotechnology Information (US), Bethesda, 2013).

  • 63.

    Goel, A., Santos, F., de Vos, W. M., Teusink, B. & Molenaar, D. Standardized assay medium to measure Lactococcus lactis enzyme activities while mimicking intracellular conditions. Appl. Environ. Microbiol.78, 134–143 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Andrews, S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

  • 65.

    Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol.15, R46 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom.9, 75 (2008).


    Google Scholar
     

  • 67.

    Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol.1151, 165–188 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    O’Toole, G. A. Microtiter dish biofilm formation assay. J. Vis. Exp.47, 1–2 (2010).


    Google Scholar
     

  • 69.

    Vlamakis, H., Aguilar, C., Losick, R. & Kolter, R. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev.22, 945–953 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Branda, S. S., Chu, F., Kearns, D. B., Losick, R. & Kolter, R. A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol.49, 1229–1328 (2006).


    Google Scholar
     

  • 71.

    Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res.37, D211–D215 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Marchler-Bauer, A. et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res.45, D200–D203 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Foster, T. J. The MSCRAMM family of cell-wall-anchored surface proteins of gram-positive Cocci. Trends Microbiol.27, 927–941 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Sotomayor, M. & Schulten, K. The allosteric role of the Ca2+ switch in adhesion and elasticity of C-cadherin. Biophys. J.94, 4621–4633 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Bentley, S. D. et al. Sequencing and analysis of the genome of the Whipple’s disease bacterium Tropheryma whipplei. Lancet361, 637–644 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Chen, X. Z. et al. Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature401, 383–386 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Cucarella, C. et al. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol.183, 2888–2896 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *