CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

  • 2.

    Nilsson, M., Griggs, D. & Visbeck, M. Policy: map the interactions between Sustainable Development Goals. Nature 534, 320–322 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • 3.

    Alexander, P., Brown, C., Arneth, A., Finnigan, J. & Rounsevell, M. D. A. Human appropriation of land for food: the role of diet. Glob. Environ. Change 41, 88–98 (2016).


    Google Scholar
     

  • 4.

    Fujimori, S. et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2, 386–396 (2019).


    Google Scholar
     

  • 5.

    Stehfest, E. et al. Key determinants of global land-use projections. Nat. Commun. 10, 2166 (2019).

  • 6.

    Agnolucci, P. & De Lipsis, V. Long-run trend in agricultural yield and climatic factors in Europe. Clim. Change https://doi.org/10.1007/s10584-019-02622-3 (2019).

  • 7.

    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    ADS 

    Google Scholar
     

  • 8.

    Holland, R. A. et al. The influence of the global energy system on terrestrial biodiversity. Proc. Natl Acad. Sci. USA 116, 26078–26084 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Lobell, D. B. & Asseng, S. Comparing estimates of climate change impacts from process-based and statistical crop models. Environ. Res. Lett. 12, 015001 (2017).

    ADS 

    Google Scholar
     

  • 10.

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Moore, F. C. & Lobell, D. B. The fingerprint of climate trends on European crop yields. Proc. Natl Acad. Sci. USA 112, 2670–2675 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6, 1130–1136 (2016).

    ADS 

    Google Scholar
     

  • 14.

    Moore, F. C., Baldos, U. L. C. & Hertel, T. Economic impacts of climate change on agriculture: a comparison of process-based and statistical yield models. Environ. Res. Lett. 12, 065008 (2017).

    ADS 

    Google Scholar
     

  • 15.

    Ciscar, J., Vanden, F. K. & Lobell, D. B. (2018) Synthesis and review: an inter-method comparison of climate change impacts on agriculture. Environ. Res. Lett. 13, 070401 (2018).

    ADS 

    Google Scholar
     

  • 16.

    Lobell, D. B. & Field, C. F. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 011002 (2007).


    Google Scholar
     

  • 17.

    Moore, F. C. & Lobell, D. B. The adaptation potential of European agriculture in response to climate change. Nat. Clim. Change 4, 610–614 (2014).

    ADS 

    Google Scholar
     

  • 18.

    Monfreda, C., Ramankutty, N. & Foley, J. A. (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    ADS 

    Google Scholar
     

  • 19.

    Lobell, D. B. & Asner, G. P. Climate and management contributions to recent trends in U.S. agricultural yields. Science 299, 1032–1032 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Lobell, D. B. & Burke, M. B. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environ. Res. Lett. 3, 034007 (2008).

    ADS 

    Google Scholar
     

  • 21.

    Lobell, D. B. & Tebaldi, C. Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades. Environ. Res. Lett. 9, 074003 (2014).

    ADS 

    Google Scholar
     

  • 22.

    Pugh, T. A. et al. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nat. Commun. 7, 12608 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Oladele et al, O. I., Bam, R. K., Buri, M. M. & Wakatsuki, T. Missing prerequisites for Green Revolution in Africa: lessons and challenges of Sawah rice eco-technology development and dissemination in Nigeria and Ghana. J. Food Agric. Environ. 8, 1014–1018 (2016).


    Google Scholar
     

  • 24.

    Araji, H. A. et al. Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models. Agric. Water Manag. 205, 63–71 (2018).


    Google Scholar
     

  • 25.

    Li, X. & Troy, T. J. Changes in rainfed and irrigated crop yield response to climate in the western US. Environ. Res. Lett. 13, 064031 (2018).

    ADS 

    Google Scholar
     

  • 26.

    Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).

    ADS 

    Google Scholar
     

  • 27.

    Siebert, S. et al. Impact of heat stress on crop yield – on the importance of considering canopy temperature. Environ. Res. Lett. 9, 044012 (2014).

    ADS 

    Google Scholar
     

  • 28.

    Fara, S. J., Delazari, F. T., Gomes, R. S., Araújo, W. L. & da Silva, D. J. H. Stomata opening and productiveness response of fresh market tomato under different irrigation intervals. Sci. Hortic. 255, 86–95 (2019).


    Google Scholar
     

  • 29.

    Rockström, J. & Falkenmark, M. Agriculture: increase water harvesting in Africa. Nature 519, 283–285 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 30.

    Schlenker, W. & Lobell, D. B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 5, 014010 (2010).

    ADS 

    Google Scholar
     

  • 31.

    Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Evenson, R. E. & Gollin, D. Assessing the impact of the green revolution, 1960 to 2000. Science. 300, 758–762 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Butler, E. E. & Huybers, P. Adaptation of US maize to temperature variations. Nat. Clim. Change 3, 68–72 (2013).

    ADS 

    Google Scholar
     

  • 34.

    Tack, J., Barkley, A. & Nalley, L. L. Effect of warming temperatures on US wheat yields. Proc. Natl Acad. Sci. USA 112, 6931–6936 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Ko, J. et al. Climate change impacts on dryland cropping systems in the Central Great Plains, USA. Clim. Change 111, 445–472 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Carter, E. K., Riha, S. J., Melkonian, J. & Steinschneider, S. Yield response to climate, management, and genotype: a large-scale observational analysis to identify climate-adaptive crop management practices in high-input maize systems. Environ. Res. Lett. 13, 114006 (2018).

    ADS 

    Google Scholar
     

  • 37.

    Lizumi, T. & Ramankutty, N. How do weather and climate influence cropping area and intensity. Glob. Food Secur. 4, 46–50 (2015).


    Google Scholar
     

  • 38.

    Kurukulasuriya, P. & Mendelsohn, R. Crop switching as a strategy for adapting to climate change. Afr. J. Agric. Resour. Econ. 2, 1–22 (2008).


    Google Scholar
     

  • 39.

    Mertz, O., Mbow, C., Reenberg, A. & Diouf, A. Farmers’ perceptions of climate change and agricultural adaptation strategies in rural Sahel. Environ. Manag. 43, 804–816 (2009).

    ADS 

    Google Scholar
     

  • 40.

    Gorst, A., Dehlavi, A. & Groom, B. Crop productivity and adaptation to climate change in Pakistan. Environ. Dev. Econ. 23, 679–701 (2018).


    Google Scholar
     

  • 41.

    Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nosberger, J. & Ort, D. R. Food for thought: lower-than-expected crop yield simulation with rising CO2 concentration. Science 312, 1918–1921 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/9/3/034011 (2014).

  • 43.

    Leakey, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60, 2859–2876 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Obermeier, W. A. et al. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat. Clim. Change 7, 137–141 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Taub, D. et al. Effects of elevated CO2 on the protein concentration of food crops: a metaanalysis. Glob. Change Biol. 14, 565–575 (2008).

    ADS 

    Google Scholar
     

  • 46.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Dalin, C., Wadas, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Sanchez, P. A. & Swaminathan, M. S. Hunger in Africa: the link between unhealthy people and unhealthy soils. Lancet 365, 442–444 (2005).

    PubMed 

    Google Scholar
     

  • 49.

    Alexander, P. et al. Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide. Glob. Change Biol. 24, 2791–2809 (2018).

    ADS 

    Google Scholar
     

  • 50.

    Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).


    Google Scholar
     

  • 51.

    Campos, J., Ericsson, N. R. & Hendry D. F. General-to-Specific Modelling: An Overview and Selected Bibliography International Finance Discussion Papers 835 (Board of Governors of the Federal Reserve System, 2005).

  • 52.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).


    Google Scholar
     

  • 53.

    Tebaldi, C. & Lobell, D. B. Estimated impacts of emission reductions on wheat and maize crops. Clim. Change 146, 533–545 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Popp, J., Peto, K. & Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Devel. 33, 243–255 (2013).


    Google Scholar
     

  • 55.

    Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 014002 (2014).


    Google Scholar
     

  • 56.

    Christensen, J. H. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 11 (Cambridge Univ. Press, 2007).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *