• 1.

    Dunn, D. E. Trends in Nutrient Inflows to the Gulf of Mexico from Streams Draining the Conterminous United States, 1972–1993 (US Geological Survey, 1996).

  • 2.

    Goolsby, D. A., Battaglin, W. A., Aulenbach, B. T. & Hooper, R. P. Nitrogen flux and sources in the Mississippi River Basin. Sci. Total Environ. 248, 75–86 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Rabalais, N. N. et al. Hypoxia in the northern Gulf of Mexico: does the science support the plan to reduce, mitigate, and control hypoxia? Estuar. Coasts https://doi.org/10.1007/BF02841332 (2007).

  • 4.

    David, M. B., Drinkwater, L. E. & McIsaac, G. F. Sources of nitrate yields in the Mississippi River Basin. J. Environ. Qual. https://doi.org/10.2134/jeq2010.0115 (2010).

  • 5.

    Rabalais, N. N., Turner, R. E., Wiseman, J., William, J. & Dortch, Q. Consequences of the 1993 Mississippi River flood in the Gulf of Mexico. Regul. Rivers Res. Manag. 14, 161–177 (1998).

    Article 

    Google Scholar
     

  • 6.

    Scavia, D., Rabalais, N. N., Turner, R. E., Justić, D., Wiseman, W. J. Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load. Limnol. Oceanogr. https://doi.org/10.4319/lo.2003.48.3.0951 (2003).

  • 7.

    Turner, R. E., Rabalais, N. N. & Justic, D. Predicting summer hypoxia in the northern Gulf of Mexico: Riverine N, P, and Si loading. Mar. Pollut. Bull. 52, 139–148 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    US Environmental Protection Agency. Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Office of Wetlands, Oceans, and Watersheds, US Environmental Protection Agency, 2001).

  • 9.

    US Environmental Protection Agency. Mississippi River/Gulf of Mexico Watershed Nutrient Task Force: 2015 Report to Congress (US Environmental Protection Agency, 2015).

  • 10.

    US Environmental Protection Agency. Mississippi River/Gulf of Mexico Hypoxia Task Force, Northern Gulf of Mexico Hypoxic Zone. https://www.epa.gov/ms-htf/northern-gulf-mexico-hypoxic-zone (2020).

  • 11.

    US Environmental Protection Agency. Hypoxia in the Northern Gulf of Mexico: An Update by the EPA, Scientific Advisory Board (US Environmental Protection Agency, 2007).

  • 12.

    Scavia, D. et al. Ensemble modeling informs hypoxia management in the northern Gulf of Mexico. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas.1705293114 (2017).

  • 13.

    Donner, S. D. & Scavia, D. How climate controls the flux of nitrogen by the Mississippi River and the development of hypoxia in the Gulf of Mexico. Limnol. Oceanogr. https://doi.org/10.4319/lo.2007.52.2.0856 (2007).

  • 14.

    Murdoch, P. S., Baron, J. S. & Miller, T. L. Potential effects of climate change on surface-water quality in North America. J. Am. Water Resour. Assoc. https://doi.org/10.1111/j.1752-1688.2000.tb04273.x (2000).

  • 15.

    Sinha, E. & Michalak, A. M. Precipitation dominates interannual variability of riverine nitrogen loading across the continental United States. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.6b04455 (2016).

  • 16.

    Groisman, P. Y., Knight, R. W. & Karl, T. R. Changes in intense precipitation over the central United States. J. Hydrometeorol 13, 47–66 (2012).

    Article 

    Google Scholar
     

  • 17.

    Bratkovich, A., Dinnel, S. P. & Goolsby, D. A. Variability and prediction of freshwater and nitrate fluxes for the Louisiana-Texas shelf: Mississippi and Atchafalaya River source functions. Estuaries 17, 766–778 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Rabalais, N. N., Turner, R. E. & Scavia, D. Beyond Science into Policy: Gulf of Mexico Hypoxia and the Mississippi River Nutrient policy development for the Mississippi River watershed reflects the accumulated scientific evidence that the increase in nitrogen loading is the primary factor in the wo. Bioscience 52, 129–142 (2002).

    Article 

    Google Scholar
     

  • 19.

    Rabalais, N. N., Atilla, N., Normandeau, C. & Eugene Turner, R. Ecosystem history of Mississippi River-influenced continental shelf revealed through preserved phytoplankton pigments. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2004.03.017 (2004).

  • 20.

    Tian, H. et al. Long‐term trajectory of nitrogen loading and delivery from Mississippi River Basin to the Gulf of Mexico. Global Biogeochem. Cycles 34, e2019GB006475 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Sinha, E., Michalak, A. M. & Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357, 405–408 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Howarth, R. et al. Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Front. Ecol. Environ. 10, 37–43 (2012).

    Article 

    Google Scholar
     

  • 23.

    Smith, R. A., Schwarz, G. E. & Alexander, R. B. Regional interpretation of water-quality monitoring data. Water Resour. Res. https://doi.org/10.1029/97WR02171 (1997).

  • 24.

    Robertson, D. M., Saad, D. A. & Schwarz, G. E. Spatial variability in nutrient transport by HUC 8, state, and subbasin based on Mississippi/Atchafalaya River Basin SPARROW Models. J. Am. Water Resour. Assoc. 50, 988–1009 (2014).

    Article 

    Google Scholar
     

  • 25.

    Lee, M., Shevliakova, E., Malyshev, S., Milly, P. C. D. & Jaffé, P. R. Climate variability and extremes, interacting with nitrogen storage, amplify eutrophication risk. Geophys. Res. Lett. https://doi.org/10.1002/2016GL069254 (2016).

  • 26.

    Yang, Q. et al. Increased nitrogen export from eastern North America to the Atlantic Ocean due to climatic and anthropogenic changes during 1901–2008. J. Geophys. Res. Biogeosci. 120, 757–772 (2015).

    Article 

    Google Scholar
     

  • 27.

    Tian, H. et al. Climate extremes dominating seasonal and interannual variations in carbon export from the Mississippi River Basin. Global Biogeochem. Cycles 29, 1333–1347 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Stenback, G. A., Crumpton, W. G., Schilling, K. E. & Helmers, M. J. Rating curve estimation of nutrient loads in Iowa rivers. J. Hydrol. 396, 158–169 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Munoz, S. E. & Dee, S. G. El Niño increases the risk of lower Mississippi River flooding. Sci. Rep. https://doi.org/10.1038/s41598-017-01919-6 (2017).

  • 30.

    Cao, P., Lu, C. & Yu, Z. Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850–2015: application rate, timing, and fertilizer types. Earth Syst. Sci. Data 10, 969 (2018).

    Article 

    Google Scholar
     

  • 31.

    VanLoocke, A., Twine, T. E., Kucharik, C. J. & Bernacchi, C. J. Assessing the potential to decrease the Gulf of Mexico hypoxic zone with Midwest US perennial cellulosic feedstock production. GCB Bioenergy 9, 858–875 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Van Meter, K. J., Van Cappellen, P. & Basu, N. B. Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science https://doi.org/10.1126/science.aar4462 (2018).

  • 33.

    Nangia, V., Gowda, P. H. & Mulla, D. J. Effects of changes in N-fertilizer management on water quality trends at the watershed scale. Agric. Water Manag. https://doi.org/10.1016/j.agwat.2010.06.023 (2010).

  • 34.

    Nangia, V., Mulla, D. J. & Gowda, P. H. Precipitation changes impact stream discharge, nitrate-nitrogen load more than agricultural management changes. J. Environ. Qual. https://doi.org/10.2134/jeq2010.0105 (2010).

  • 35.

    Kelly, S. A., Takbiri, Z., Belmont, P. & Foufoula-Georgiou, E. Human amplified changes in precipitation-runoff patterns in large river basins of the Midwestern United States. Hydrol. Earth Syst. Sci. https://doi.org/10.5194/hess-21-5065-2017 (2017).

  • 36.

    Field, C. B. et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2012).

  • 37.

    Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693–712 (2005).

    Article 

    Google Scholar
     

  • 38.

    Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).

    Article 

    Google Scholar
     

  • 39.

    Wei, Y. et al. The north american carbon program multi-scale synthesis and terrestrial model intercomparison project—Part 2: environmental driver data. Geosci. Model Dev. 7, 2875–2893 (2014).

    Article 

    Google Scholar
     

  • 40.

    Dentener, F. J. Global Maps of Atmospheric Nitrogen Deposition, 1860, 1993, and 2050. Data Set (Oak Ridge Natl. Lab. Distrib. Act. Arch. Center, Oak Ridge, 2006).

  • 41.

    Yu, Z. & Lu, C. Historical cropland expansion and abandonment in the continental US during 1850 to 2016. Glob. Ecol. Biogeogr. 27, 322–333 (2018).

    Article 

    Google Scholar
     

  • 42.

    Robertson, D. M. & Saad, D. A. SPARROW models used to understand nutrient sources in the Mississippi/Atchafalaya River Basin. J. Environ. Qual. 42, 1422–1440 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Zhang, J., Felzer, B. S. & Troy, T. J. Extreme precipitation drives groundwater recharge: the Northern High Plains Aquifer, central United States, 1950–2010. Hydrol. Process. 30, 2533–2545 (2016).

    Article 

    Google Scholar
     

  • 44.

    Zhang, X., Hegerl, G., Zwiers, F. W. & Kenyon, J. Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Clim. 18, 1641–1651 (2005).

    Article 

    Google Scholar
     

  • 45.

    Chen, G. et al. Climate Impacts on China’s Terrestrial Carbon Cycle: An Assessment with the Dynamic Land Ecosystem Model. In: Environmental Modeling and Simulation (ed Tian, H. Q.), pp. 56–70. (ACTA Press, Calgary, 2006).

  • 46.

    Liu, M. et al. Effects of land‐use and land‐cover change on evapotranspiration and water yield in China during 1900‐2000 1. J. Am. Water Resour. Assoc. 44, 1193–1207 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Tian, H. et al. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model. Biogeosciences 7, 2673–2694 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 48.

    Lu, C. et al. Increasing carbon footprint of grain crop production in the US Western Corn Belt. Environ. Res. Lett. 13, 124007 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Liu, M. et al. Long-term trends in evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during 1901–2008. Water Resour. Res. 49, 1988–2012 (2013).

    Article 

    Google Scholar
     

  • 50.

    Ross, T. & Lott, N. A Climatology of 1980–2003 Extreme Weather and Climate Events. National Climatic Data Center Technical Report No. 2003-01 (NOAA/NationalClimatic Data Center, Asheville, 2003).

  • 51.

    Timmons, D. R. & Baker, J. L. Recovery of point-injected labeled nitrogen by corn as affected by timing, rate, and tillage. Agron. J. 83, 850–857 (1991).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Hanway, J. J. How a Corn Plant Develops. Special Report, 38 (Iowa State University, Cooperative Extension Service, 1966).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *