CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Agrios, G. N. Plant Pathology, 5th Edition. Elsevier Academic Press: Amsterdam, 2005.

  • 2.

    Walters, D., Walsh, D., Newton, A. & Lyon, G. Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95(12), 1368–1373 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Atkinson, N. J. & Urwin, P. E. The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63(10), 3523–3543 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Fujita, M. et al. Cross-talk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9(4), 436–442 (2006).

    PubMed 

    Google Scholar
     

  • 5.

    Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444(7117), 323–329 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A. & Van Wees, S. C. M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Durrant, W. E. & Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185–209 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    van Loon, L. C., Bakker, P. A. H. M. & Pieterse, C. M. J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36, 453–483 (1998).

    PubMed 

    Google Scholar
     

  • 9.

    Strobel, N. E., Ji, C., Gopalan, S., Kuć, J. A. & He, S. Y. Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J. 9(4), 431–439 (1996).

    CAS 

    Google Scholar
     

  • 10.

    Zhu, F. et al. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. Mol. Plant Microbe Interact. 27(6), 567–577 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Frías, M., Brito, N. & González, C. The Botrytis cinerea cerato-platanin BcSpl1 is a potent inducer of systemic acquired resistance (SAR) in tobacco and generates a wave of salicylic acid expanding from the site of application. Mol. Plant Pathol. 14(2), 191–196 (2013).

    PubMed 

    Google Scholar
     

  • 12.

    Wu, Y. et al. Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense. J. Plant. Physiol. 170(11), 1039–1046 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Zarate, S. I., Kempema, L. A. & Walling, L. L. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol. 143(2), 866–875 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Shah, J. & Zeier, J. Long-distance communication and signal amplification in systemic acquired resistance. Front. Plant Sci. 4, 30 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Pieterse, C. M. J. & Leon-Reyes, A. Van der Ent, S.; Van Wees, S. C. M., Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5(5), 308–316 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Walling, L. L. Adaptive defense responses to pathogens and insects. In Advances in Botanical Research, Van Loon, L. C., Ed. Elsevier, 551–612 (2009).

  • 17.

    Salomon, M. V., Pinter, I. F., Piccoli, P. & Bottini, R. Use of plant growth-promoting rhizobacteria as biocontrol agents: Induced systemic resistance against biotic stress in plants. In Microbial Applications, Kalia, V., Ed. Springer, Cham: 2017; Vol. 2.

  • 18.

    Pieterse, C. M. J. et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Kuć, J. Concepts and direction of induced systemic resistance in plants and its application. Eur. J. Plant Pathol. 107(1), 7–12 (2001).


    Google Scholar
     

  • 20.

    Anderson, A. J., Blee, K. A. & Yang, K.-Y., Commercialization of plant systemic defense activation: theory, problems and successes. In Multigenic and Induced Systemic Resistance in Plants, Tuzun, S.; Bent, E., Eds. Springer: Boston, MA, 2006.

  • 21.

    Walters, D. R., Ratsep, J. & Havis, N. D. Controlling crop diseases using induced resistance: challenges for the future. J. Exp. Bot. 64(5), 1263–1280 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Mandal, B. et al. Biological and molecular analyses of the acibenzolar-S-methyl-induced systemic acquired resistance in flue-cured tobacco against Tomato spotted wilt virus. Phytopathology 98(2), 196–204 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Cohen, Y., Rubin, A. E. & Vaknin, M. Post infection application of DL-3-amino-butyric acid (BABA) induces multiple forms of resistance against Bremia lactucae in lettuce. Eur. J. Plant Pathol. 130(1), 13–27 (2011).

    CAS 

    Google Scholar
     

  • 24.

    Reuveni, M., Sheglov, D. & Cohen, Y. Control of moldy-core decay in apple fruits by β-aminobutyric acids and potassium phosphites. Plant Dis. 87(8), 933–936 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Boyle, C. & Walters, D. Induction of systemic protection against rust infection in broad bean by saccharin: effects on plant growth and development. New Phytol. 167(2), 607–612 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Zhang, S. et al. Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J. Integr. Plant Biol. 52(2), 167–174 (2009).


    Google Scholar
     

  • 27.

    Vicedo, B. et al. García-Agustín, P.; González-Bosch, C., Hexanoic acid-induced resistance against Botrytis cinerea in tomato plants. Mol. Plant Microbe Interact. 22(11), 1455–1465 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Basagli, M. A. B., Moraes, J. C., Carvalho, G. A. & Ecole, C. C. Gonçalves-Gervásio, R. d. C. R., Effect of sodium silicate application on the resistance of wheat plants to the green-aphids Schizaphis graminum (Rond.) (Hemiptera: Aphididae). Neotrop. Entomol. 32(4), 659–663 (2003).

    CAS 

    Google Scholar
     

  • 29.

    Reynolds, O. L., Keeping, M. G. & Meyer, J. H. Silicon-augmented resistance of plants to herbivorous insects: a review. Ann. Appl. Biol. 155, 171–186 (2009).

    CAS 

    Google Scholar
     

  • 30.

    Borges, A. A., Borges-Pérez, A. & Fernández-Falcón, M. Induced resistance to Fusarial wilt of banana by menadione sodium bisulphite treatments. Crop Prot. 23(12), 1245–1247 (2004).

    CAS 

    Google Scholar
     

  • 31.

    Jiménez-Arias, D. et al. Menadione sodium bisulphite (MSB): Beyond seed-soaking. Root pretreatment with MSB primes salt stress tolerance in tomato plants. Env. Exp. Bot. 157, 161–170 (2019).


    Google Scholar
     

  • 32.

    Benhamou, N., Lafontaine, P. J. & Nicole, M. Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology 84(12), 1432–1444 (1994).

    CAS 

    Google Scholar
     

  • 33.

    Malerba, M. & Cerana, R. Chitosan effects on plant systems. Int. J. Mol. Sci. 17(7), 996 (2016).

    PubMed Central 

    Google Scholar
     

  • 34.

    Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. & Greenberg, J. T. Priming in systemic plant immunity. Science 324(5923), 89–91 (2009).

    ADS 
    PubMed 

    Google Scholar
     

  • 35.

    Ádám, A. L., Nagy, Z. Á., Kátay, G., Mergenthaler, E. & Viczián, O. Signals of systemic immunity in plants: progress and open questions. Int. J. Mol. Sci. 19(4), E1146 (2018).

    PubMed 

    Google Scholar
     

  • 36.

    Cerioni, L. et al. Use of phosphite salts in laboratory and semicommercial tests to control citrus postharvest decay. Plant Dis. 97(2), 201–212 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Ahn, I.-P., Kim, S. & Lee, Y.-H. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138(3), 1505–1515 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Verma, V., Ravindran, P. & Kumar, P. P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16, 86 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Zhou, N., Tootle, T. L. & Glazebrook, J. Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 Monooxygenase. The Plant Cell 11(12), 2419–2428 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Malamy, J., Carr, J. P., Klessig, D. F. & Raskin, I. Salicylic Acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250(4983), 1002–1004 (1990).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Seltmann, M. A. et al. Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol. 152(4), 1940–1950 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Gaffney, T. et al. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261(5122), 754–756 (1993).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Turner, J. G., Ellis, C. & Devoto, A. The jasmonate signal pathway. Plant Cell 14(Suppl), S153–S164. (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Katsir, L., Chung, H. S., Koo, A. J. & Howe, G. A. Jasmonate signaling: a conserved mechanism of hormone sensing. Curr. Opin. Plant Biol. 11(4), 428–435 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Horváth, E., Szalai, G. & Janda, T. Induction of abiotic stress tolerance by salicylic acid signaling. J. Plant Growth Regul. 26(3), 290–300 (2007).


    Google Scholar
     

  • 46.

    Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A. & Khan, N. A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 6, 462 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Nazar, R., Umar, S., Khan, N. A. & Sareer, O. Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. S. Afr. J. Bot. 98, 84–94 (2015).

    CAS 

    Google Scholar
     

  • 48.

    Habibi, G. Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biol. Szeged. 56(1), 57–63 (2012).

    MathSciNet 

    Google Scholar
     

  • 49.

    Waseem, M., Athar, H. & Ashraf, M. Effect of salicylic acid applied through rooting medium on drought tolerance of wheat. Pak. J. Bot. 38(4), 1127–1136 (2006).


    Google Scholar
     

  • 50.

    Barkosky, R. R. & Einhellig, F. A. Effects of salicylic acid on plant-water relationships. J. Chem. Ecol. 19, 237–247 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Elhakem, A. H. Impact of salicylic acid application on growth, photosynthetic pigments and organic osmolytes response in Mentha arvensis under drought stress. J. Biol. Sci. 19, 372–380 (2019).


    Google Scholar
     

  • 52.

    Dalisay, R. F. & Kuć, J. A. Persistence of induced resistance and enhanced peroxidase and chitinase activities in cucumber plants. Physiol. Mol. Plant Pathol. 47(5), 315–327 (1995).

    CAS 

    Google Scholar
     

  • 53.

    Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19(10), 1062–1071 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Massoud, K. et al. Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. Plant Physiol. 159(1), 286–298 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Hayat, S., Ali, B. & Ahmad, A. Salicylic acid: biosynthesis, metabolism and physiological role in plants. In Salicylic Acid: A Plant Hormone, Hayat, S. & Ahmad, A., Eds. Springer: Dordrecht, 2007.

  • 56.

    Koornneef, A. & Pieterse, C. M. J. Cross talk in defense signaling. Plant Physiol. 146(3), 839–844 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Howe, G. A. & Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59, 41–66 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Truman, W., Bennett, M. H., Kubigsteltig, I., Turnbull, C. & Grant, M. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc. Natl. Acad. Sci. USA 104(3), 1075–1080 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R. & Andreu, A. B. Potassium phosphite primes defense responses in potato against Phytophthora infestans. J. Plant. Physiol. 169(14), 1417–1424 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Olivieri, F. P. et al. Phosphite applications induce molecular modifications in potato tuber periderm and cortex that enhance resistance to pathogens. Crop Prot. 32, 1–6 (2012).

    CAS 

    Google Scholar
     

  • 61.

    Armengaud, P., Breitling, R. & Amtmann, A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 136(1), 2556–2576 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Leyva, M. O. et al. Preventive and post-infection control of Botrytis cinerea in tomato plants by hexanoic acid. Plant Pathol. 57, 1038–1046 (2008).

    CAS 

    Google Scholar
     

  • 63.

    Bezemer, T. M. & van Dam, N. M. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20(11), 617–624 (2005).

    PubMed 

    Google Scholar
     

  • 64.

    Gatehouse, J. A. Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 156(2), 145–169 (2002).

    CAS 

    Google Scholar
     

  • 65.

    Karban, R. The ecology and evolution of induced resistance against herbivores. Funct. Ecol. 25, 339–347 (2010).


    Google Scholar
     

  • 66.

    Kessler, A. & Baldwin, I. T. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53, 299–328 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Bostock, R. M., Karban, R., Thaler, J. S., Weyman, P. D. & Gilchrist, D. Signal interactions in induced resistance to pathogens and insect herbivores. Eur. J. Plant Pathol. 107(1), 103–111 (2001).

    CAS 

    Google Scholar
     

  • 68.

    Howe, G. A. Jasmonates as signals in the wound response. J. Plant Growth Regul. 23, 223–237 (2004).

    CAS 

    Google Scholar
     

  • 69.

    Verhage, A., van Wees, S. C. M. & Pieterse, C. M. J. Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol. 154(2), 536–540 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Sarde, S. J. et al. Involvement of sweet pepper CaLOX2 in jasmonate-dependent induced defence against Western flower thrips. J. Integr. Plant Biol. 61(10), 1085–1098 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Lazebnik, J., Frago, E., Dicke, M. & van Loon, J. J. Phytohormone mediation of interactions between herbivores and plant pathogens. J. Chem. Ecol. 40(7), 730–741 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Koornneef, A. et al. Towards a reporter system to identify regulators of cross-talk between salicylate and jasmonate signaling pathways in Arabidopsis. Plant Signal. Behav. 3(8), 543–546 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Leon-Reyes, A. et al. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232(6), 1423–1432 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Pineda, A., Zheng, S. J., van Loon, J. J. & Dicke, M. Rhizobacteria modify plant-aphid interactions: a case of induced systemic susceptibility. Plant Biol. 14((Suppl. 1), 83–90 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Doares, S. H., Syrovets, T., Weiler, E. W. & Ryan, C. A. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 92(10), 4095–4098 (1995).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11(1), 15–19 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Koornneef, A. et al. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol. 147(3), 1358–1368 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Engelberth, J., Viswanathan, S. & Engelberth, M. J. Low concentrations of salicylic acid stimulate insect elicitor responses in Zea mays seedlings. J. Chem. Ecol. 37(3), 263–266 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Ellis, C. & Turner, J. G. A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215(4), 549–556 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Yu, H. et al. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20(4), 1134–1151 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Sun, J. et al. The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants. Plant Cell Rep. 34(1), 23–35 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    De Vos, M. & Jander, G. Choice and no-choice assays for testing the resistance of A. thaliana to chewing insects. J. Vis. Exp. 15, 683 (2008).


    Google Scholar
     

  • 83.

    Van Wees, S. C. M.; Van Pelt, J. A.; Bakker, P. A. H. M. & Pieterse, C. M. J., Bioassays for assessing jasmonate-dependent defenses triggered by pathogens, herbivorous insects, or beneficial rhizobacteria. In Jasmonate Signaling. Methods in Molecular Biology (Methods and Protocols), Goossens, A.; Pauwels, L., Eds. Humana Press: Totowa, NJ, 2013; Vol. 1011, pp 35-49.

  • 84.

    Van Pelt, J. A., Van der Sluis, I., Pieterse, C. M. J. & Bakker, P. A. H. M. Induced systemic resistance bioassays in Arabidopsis thaliana. In Prospects and Applications for Plant-Associated Microbes. A Laboratory Manual, Part A: Bacteria., Sorvari, S.; Pirttilä, A. M., Eds. BioBien Innovations: Piikkiö, Finland, 2008; pp 113–118.

  • 85.

    Herrera-Romero, I., Ruales, C., Caviedes, M. & Leon-Reyes, A. Postharvest evaluation of natural coatings and antifungal agents to control Botrytis cinerea in Rosa sp. Phytoparasitica 45, 9 (2017).

    CAS 

    Google Scholar
     

  • 86.

    Ritchie, G. A. & Hinckley, T. M. The Pressure Chamber as an Instrument for Ecological Research. Adv. Ecol. Res. 9, 165–254 (1975).


    Google Scholar
     

  • 87.

    Fallas-Cedeño, L., Holbrook, N. M., Rocha, O. J., Vásquez, N. & Gutiérrez‐Soto, M. V. Phenology, lignotubers, and water relations of Cochlospermum vitifolium, a pioneer tropical dry forest tree in Costa Rica. Biotropica 42(1), 104–111 (2010).


    Google Scholar
     

  • 88.

    Galieni, A. et al. Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Sci. Hort. 187, 93–101 (2015).

    CAS 

    Google Scholar
     

  • 89.

    Sharma, P. Chlorophyll Fluorescence parameters, SPAD chlorophyll and yield in Brassica cultivars. J. Oilseed Brassica 6(2), 249–256 (2015).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *