AbstractThe structural performance of concrete structures requires swelling the bending and shear characteristics of reinforced concrete (RC) beams. The bending characteristics of RC beams consisting of waste granite aggregate (WGA), steel fibers (SF), polypropylene fibers (PF), and glass fibers (GF) are assessed in this research. Twenty-one 2,000  mm×200  mm×250  mm RC beams were cast and tested. WGA was sorted and utilized instead of natural coarse aggregates (NA), with three mass replacement fractions: 0%, 50%, and 100%. Besides, SF, PF, and GF were utilized separately at three fractions of 0%, 0.5%, and 1%. Beams were loaded under a four-point bending arrangement, and the ultimate bending resistance, deformability, stiffness and crack development were recorded and assessed. Also, an evaluation of experimental results and existing design standards in terms of maximum crack width has been carried out. Moreover, a cost-sensitivity examination has been made to analyze the effectiveness of using various fibers in terms of cost. Experiments revealed that the impact of PF on enhancing the load-bearing capability of beams with WGA was greater than that of strengthened with SF and GF. However, the impact of GF on the ultimate deformability of WGA RC beam samples was superior to that of PF and SF. PF has a greater influence on enhancing the flexural capacity of RC beams than SF; nevertheless, SF has a greater influence on deformation. The ductility and deformability of RC beams were substantially enhanced when GF was introduced in specimens made with WGA.

Source link

Leave a Reply

Your email address will not be published. Required fields are marked *