CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Sasser, J. N. & Freckman, D. W. A world perspective on nematology: the role of the society. J. Nematol. 18, 596 (1986).


    Google Scholar
     

  • 2.

    Sijmons, P. C., Grundler, F. M. W., Mende, N., Burrows, P. R. & Wyss, U. Arabidopsis thaliana as a new model host for plant-parasitic nematodes. Plant J. 1, 245–254. https://doi.org/10.1111/j.1365-313X.1991.00245.x (1991).

    Article 

    Google Scholar
     

  • 3.

    Golinowski, W., Grundler, F. M. W. & Sobczak, M. Changes in the structure of Arabidopsis thaliana during female development of the plant-parasitic nematode Heterodera schachtii. Protoplasma 194, 103–116. https://doi.org/10.1007/BF01273172 (1996).

    Article 

    Google Scholar
     

  • 4.

    Ashrafi, K. Obesity and the regulation of fat metabolism. WormBook: The Online Review of C. elegans Biology, 1–20. https://doi.org/10.1895/wormbook.1.130.1 (2007).

  • 5.

    Haydock, P. P. J., Woods, S. R., Grove, I. G. & Hare, M. C. Chemical control of nematodes. In Plant Nematology , Vol. 2 (eds Perry, R. N. & Moens, M.) 459–479 (CABI, Wallingford, 2013).


    Google Scholar
     

  • 6.

    Faske, T. R. & Hurd, K. Sensitivity of meloidogyne incognita and Rotylenchulus reniformis to fluopyram. J. Nematol. 47, 316–321 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Vang, L. E., Opperman, C. H., Schwarz, M. R. & Davis, E. L. Spirotetramat causes an arrest of nematode juvenile development. Nematology 18, 121–131. https://doi.org/10.1163/15685411-00002948 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Nauen, R., Reckmann, U., Thomzik, J. & Thielert, W. Biological profile of spirotetramat (Movento ®)—a new two-way systemic (ambimobile) insecticide against sucking pest species. Bayer CropSci. J. 61, 245–277 (2008).

    CAS 

    Google Scholar
     

  • 9.

    Brück, E. et al. Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: biological profile and field performance. Crop Prot. 28, 838–844. https://doi.org/10.1016/j.cropro.2009.06.015 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Lümmen, P., Khajehali, J., Luther, K. & van Leeuwen, T. The cyclic keto-enol insecticide spirotetramat inhibits insect and spider mite acetyl-CoA carboxylases by interfering with the carboxyltransferase partial reaction. Insect Biochem. Mol. Biol. 55, 1–8. https://doi.org/10.1016/j.ibmb.2014.09.010 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Karatolos, N. et al. Resistance to spiromesifen in Trialeurodes vaporariorum is associated with a single amino acid replacement in its target enzyme acetyl-coenzyme A carboxylase. Insect Mol. Biol. 21, 327–334. https://doi.org/10.1111/j.1365-2583.2012.01136.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Watts, J. L. & Browse, J. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 99, 5854–5859. https://doi.org/10.1073/pnas.092064799 (2002).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Barber, M. C., Price, N. T. & Travers, M. T. Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim. Biophys. Acta 1733, 1–28. https://doi.org/10.1016/j.bbalip.2004.12.001 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Zhang, H. et al. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat. Cell Biol. 13, 1189–1201. https://doi.org/10.1038/ncb2328 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Zhu, H., Shen, H., Sewell, A. K., Kniazeva, M. & Han, M. A novel sphingolipid-TORC1 pathway critically promotes postembryonic development in Caenorhabditis elegans. eLife 2, e00429. https://doi.org/10.7554/eLife.00429 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Berg, J. M., Tymoczko, J. L. & Stryer, L. Acetyl coenzyme A carboxylase plays a key role in controlling fatty acid metabolism. In Biochemistry, Vol. 5 (eds Berg, J. M. et al.) (W H Freeman, New York, 2002).


    Google Scholar
     

  • 17.

    Smiley, R. W., Marshall, J. M. & Yan, G. P. Effect of foliarly applied spirotetramat on reproduction of Heterodera avenae on wheat roots. Plant Dis. 95, 983–989. https://doi.org/10.1094/PDIS-01-11-0017 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Urwin, P. E., Lilley, C. J. & Atkinson, H. J. Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol. Plant Microbe Interact. 15, 747–752. https://doi.org/10.1094/MPMI.2002.15.8.747 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Watts, J. L. Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrinol. Metab. 20, 58–65. https://doi.org/10.1016/j.tem.2008.11.002 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Hasslacher, M., Ivessa, A. S., Paltauf, F. & Kohlwein, S. D. Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J. Biol. Chem. 268, 10946–10952 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Tagawa, A., Rappleye, C. A. & Aroian, R. V. Pod-2, along with pod-1, defines a new class of genes required for polarity in the early Caenorhabditis elegans embryo. Dev. Biol. 233, 412–424. https://doi.org/10.1006/dbio.2001.0234 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Abu-Elheiga, L. et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc. Natl. Acad. Sci. USA 102, 12011–12016. https://doi.org/10.1073/pnas.0505714102 (2005).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Parvy, J. P. et al. Drosophila melanogaster acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genet. 8, e1002925. https://doi.org/10.1371/journal.pgen.1002925 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Brock, T. J., Browse, J. & Watts, J. L. Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans. Genetics 176, 865–875. https://doi.org/10.1534/genetics.107.071860 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Li, Y. & Paik, Y.-K. A potential role for fatty acid biosynthesis genes during molting and cuticle formation in Caenorhabditis elegans. BMB Rep. 44, 285–290. https://doi.org/10.5483/BMBRep.2011.44.4.285 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Tehlivets, O., Scheuringer, K. & Kohlwein, S. D. Fatty acid synthesis and elongation in yeast. Biochim. Biophys. Acta 1771, 255–270. https://doi.org/10.1016/j.bbalip.2006.07.004 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 27.

    Marza, E., Simonsen, K. T., Faergeman, N. J. & Lesa, G. M. Expression of ceramide glucosyltransferases, which are essential for glycosphingolipid synthesis, is only required in a small subset of C. elegans cells. J. Cell Sci. 122, 822–833. https://doi.org/10.1242/jcs.042754 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Savage, D. B. et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J. Clin. Investig. 116, 817–824. https://doi.org/10.1172/JCI27300 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Beckers, A. et al. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res. 67, 8180–8187. https://doi.org/10.1158/0008-5472.CAN-07-0389 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 30.

    Stiernagle, T. Maintenance of C. elegans. WormBook: The Online Review of C. elegans Biology, 1–11. https://doi.org/10.1895/wormbook.1.101.1 (2006).

  • 31.

    Barros, A. G. D. A., Liu, J., Lemieux, G. A., Mullaney, B. C. & Ashrafi, K. Analyses of C. elegans fat metabolic pathways. Methods Cell Biol. 107, 383–407. https://doi.org/10.1016/B978-0-12-394620-1.00013-8 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 32.

    vom Dorp, K., Dombrink, I. & Dörmann, P. Quantification of diacylglycerol by mass spectrometry. Methods Mol. Biol. (Clifton, N.J.) 1009, 43–54. https://doi.org/10.1007/978-1-62703-401-2_5 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Schöning, R. Residue analytic method for the determination of residues of spirotetramat and its metabolites in plant and on plant material by HPLC-MS/MS. Bayer CropSci. J. 61, 417–453 (2008).


    Google Scholar
     

  • 34.

    Ren, J. et al. DOG 1.0: illustrator of protein domain structures. Cell Res. 19, 271–273. https://doi.org/10.1038/cr.2009.6 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 (1987).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evol. Int. J. Org. Evol. 39, 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x (1985).

    Article 

    Google Scholar
     

  • 37.

    Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics (Oxford University Press, New York, 2000).


    Google Scholar
     

  • 38.

    Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. https://doi.org/10.1093/molbev/msr121 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Sukno, S. A. et al. Quantitative detection of double-stranded RNA-mediated gene silencing of parasitism genes in Heterodera glycines. J. Nematol. 39, 145–152 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Patel, N. et al. A nematode effector protein similar to annexins in host plants. J. Exp. Bot. 61, 235–248. https://doi.org/10.1093/jxb/erp293 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108. https://doi.org/10.1038/nprot.2008.73 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *