Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).
Lindahl, T. & Barnes, D. E. Repair of endogenous DNA damage. in. Cold Spring Harb. Symposia Quant. Biol. 65, 127–134 (2000).
Hoeijmakers, J. H. J. DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475–1485 (2009).
Tubbs, A. & Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168, 644–656 (2017).
Rydberg, B. & Lindahl, T. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J. 1, 211–216 (1982).
Halliwell, B. & Aruoma, O. I. DNA damage by oxygen-derived species Its mechanism and measurement in mammalian systems. FEBS Lett. 281, 9–19 (1991).
Klungland, A. et al. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl Acad. Sci. USA 96, 13300 (1999).
Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).
Caldecott, K. W. Single-strand break repair and genetic disease. Nat. Rev. Genet. 9, 619–631 (2008).
Sahadevan, M. et al. The relationship of single-strand breaks in DNA to breast cancer risk and to tissue concentrations of oestrogens. Biomarkers 22, 689–697 (2017).
Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).
Mercer, J., Mahmoudi, M. & Bennett, M. DNA damage, p53, apoptosis and vascular disease. Mutat. Res. 621, 75–86 (2007).
Bartek, J., Bartkova, J. & Lukas, J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26, 7773–7779 (2007).
De Bont, R. & van Larebeke, N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19, 169–185 (2004).
O’Driscoll, M. Diseases associated with defective responses to DNA damage. Cold Spring Harb. Perspect. Biol. 4, a012773 (2012).
Chen, J. & Stubbe, J. Bleomycins: towards better therapeutics. Nat. Rev. Cancer 5, 102–112 (2005).
Wyrobek, A. J., Schmid, T. E. & Marchetti, F. Relative susceptibilities of male germ cells to genetic defects induced by cancer chemotherapies. JNCI Monogr. 2005, 31–35 (2005).
Koster, D. A., Palle, K., Bot, E. S. M., Bjornsti, M.-A. & Dekker, N. H. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 448, 213–217 (2007).
Mehta, A. & Haber, J. E. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 6, https://doi.org/10.1101/cshperspect.a016428 (2014).
Petit, C. & Sancar, A. Nucleotide excision repair: from E. coli to man. Biochimie 81, 15–25 (1999).
Moore, J. K. & Haber, J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 2164–2173 (1996).
Li, X. & Heyer, W.-D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 18, 99–113 (2008).
Hu, J., Adebali, O., Adar, S. & Sancar, A. Dynamic maps of UV damage formation and repair for the human genome. Proc. Natl Acad. Sci. USA 114, 6758–6763 (2017).
Aymami, J. et al. Molecular structure of nicked DNA: a substrate for DNA repair enzymes. Proc. Natl Acad. Sci. USA 87, 2526–2530 (1990).
Cannan, W. J. & Pederson, D. S. Mechanisms and consequences of double-strand DNA break formation in chromatin. J. Cell. Physiol. 231, 3–14 (2016).
Weinfeld, M. & Soderlind, K. J. M. Phosphorus-32-postlabeling detection of radiation-induced DNA damage: identification and estimation of thymine glycols and phosphoglycolate termini. Biochemistry 30, 1091–1097 (1991).
Weinfeld, M., Mani, R. S., Abdou, I., Aceytuno, R. D. & Glover, J. N. M. Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem. Sci. 36, 262–271 (2011).
Evans, M. D., Dizdaroglu, M. & Cooke, M. S. Oxidative DNA damage and disease: induction, repair and significance. Mutat. Res. 567, 1–61 (2004).
Swenberg, J. A. et al. Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicological Sci. 120, S130–S145 (2010).
von Sonntag, C. Free-radical-induced DNA damage and its repair. (Springer, 2006).
Cadet, J., Douki, T. & Ravanat, J.-L. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc. Chem. Res. 41, 1075–1083 (2008).
Guo, H. & Tullius, T. D. Gapped DNA is anisotropically bent. Proc. Natl Acad. Sci. USA 100, 3743–3747 (2003).
Figueroa-González, G. & Pérez-Plasencia, C. Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol. Lett. 13, 3982–3988 (2017).
Sloan, D. B., Broz, A. K., Sharbrough, J. & Wu, Z. Detecting rare mutations and DNA damage with sequencing-based methods. Trends Biotechnol. 36, 729–740 (2018).
Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E. & Deamer, D. W. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233 (1999).
Gracheva, M. E., Aksimentiev, A. & Leburton, J.-P. Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor. Nanotechnology 17, 3160–3165 (2006).
Venkatesan, B. M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–624 (2011).
Schreiber, J. et al. Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proc. Natl Acad. Sci. USA 110, 18910–18915 (2013).
An, N., Fleming, A. M., White, H. S. & Burrows, C. J. Nanopore detection of 8-oxoguanine in the human telomere repeat sequence. ACS Nano 9, 4296–4307 (2015).
Simpson, J. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).
Rand, A. C. et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Methods 14, 411–413 (2017).
Qiu, H., Sarathy, A., Schulten, K. & Leburton, J.-P. Detection and mapping of DNA methylation with 2D material nanopores. npj 2D Mater. Appl. 1, 3 (2017).
Sarathy, A., Athreya, N. B., Varshney, L. R. & Leburton, J.-P. Classification of epigenetic biomarkers with atomically thin nanopores. J. Phys. Chem. Lett. 9, 5718–5725 (2018).
Nelson, T., Zhang, B. & Prezhdo, O. V. Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett. 10, 3237–3242 (2010).
Girdhar, A., Sathe, C., Schulten, K. & Leburton, J.-P. Graphene quantum point contact transistor for DNA sensing. Proc. Natl Acad. Sci. 110, 16748–16753 (2013).
Traversi, F. et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat. Nanotechnol. 8, 939–945 (2013).
Avdoshenko, S. M. A. M. S. M. et al. Dynamic and electronic transport properties of DNA translocation through graphene nanopores. Nano Lett. 13, 1969–1976 (2013).
Liu, K., Feng, J., Kis, A. & Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for dna translocation. ACS Nano 8, 2504–2511 (2014).
Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).
Qiu, H., Sarathy, A., Leburton, J. P. & Schulten, K. Intrinsic stepwise translocation of stretched ssDNA in graphene nanopores. Nano Lett. 15, 8322–8330 (2015).
Sarathy, A. & Leburton, J. P. Electronic conductance model in constricted MoS2 with nanopores. Appl. Phys. Lett. 108, 053701 (2016).
Heerema, S. J. et al. Probing DNA translocations with inplane current signals in a graphene nanoribbon with a nanopore. ACS Nano 12, 2623–2633 (2018).
Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).
Parkin, W. M. & Drndic, M. Signal and noise in FET-nanopore devices. ACS. Sensors 3, 313–319 (2018).
Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).
Siwy, Z. S. & Davenport, M. Graphene opens up to DNA. Nat. Nanotechnol. 5, 697–698 (2010).
Girdhar, A., Sathe, C., Schulten, K. & Leburton, J.-P. Tunable graphene quantum point contact transistor for DNA detection and characterization. Nanotechnology 26, 134005 (2015).
Graf, M., Lihter, M., Altus, D., Marion, S. & Radenovic, A. Transverse detection of DNA using a MoS2 nanopore. Nano Lett. 19, 9075–9083 (2019).
Di Ventra, M. Fast DNA sequencing by electrical means inches closer. Nanotechnology 24, 342501 (2013).
Balan, A. et al. Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths. Nano Lett. 14, 7215–7220 (2014).
Tabatabaei, S. K. et al. DNA punch cards for storing data on native DNA sequences via enzymatic nicking. Nat. Commun. 11, 1742 (2020).
Humphrey, W., Dalke, A. & Schulten, K. VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
Foloppe, N. & MacKerell, A. D. Jr. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21, 86–104 (2000).
Stewart, J. A. & Spearot, D. E. Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Model. Simul. Mater. Sci. Eng. 21, 045003 (2013).
van Dijk, M. & Bonvin, A. M. J. J. 3D-DART: a DNA structure modelling server. Nucleic Acids Res. 37, W235–W239 (2009).
Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).
Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).
Aksimentiev, A., Heng, J. B., Timp, G. & Schulten, K. Microscopic kinetics of DNA translocation through synthetic nanopores. Biophys. J. 87, 2086–2097 (2004).
Xiong, M., Graf, M., Athreya, N., Radenovic, A. & Leburton, J.-P. Microscopic transport analysis of single molecule detection in MoS2 nanopore membranes. Preprint at https://arxiv.org/abs/2004.10695 (2020).