CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here?. Trends Ecol. Evol. 24, 201–207 (2009).

    PubMed 

    Google Scholar
     

  • 2.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed 

    Google Scholar
     

  • 3.

    Carpenter, S. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998).


    Google Scholar
     

  • 4.

    Cohen, A. S. et al. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. Proc. Natl. Acad. Sci. 113, 9563–9568 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Fernández, J. E., Peeters, F. & Hofmann, H. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake. Environ. Sci. Technol. 48, 7297–7304 (2014).

    ADS 

    Google Scholar
     

  • 6.

    Friedrich, J. et al. Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11, 1215–1259 (2014).

    ADS 

    Google Scholar
     

  • 7.

    Vollenweider, R. A. Advances in Defining Critical Loading Levels for Phosphorus in Lake Eutrophication (Mem. dell’Istituto Ital. di Idrobiol. Dott, Marco Marchi Verbania Pallanza, 1976).


    Google Scholar
     

  • 8.

    Jenny, J.-P. et al. Inherited hypoxia: a new challenge for reoligotrophicated lakes under global warming. Glob. Biogeochem. Cycles 28, 1413–1423 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Matzinger, A. et al. Eutrophication of ancient Lake Ohrid: global warming amplifies detrimental effects of increased nutrient inputs. Limnol. Oceanogr. 52, 338–353 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Meire, L., Soetaert, K. E. R. & Meysman, F. J. R. Impact of global change on coastal oxygen dynamics and risk of hypoxia. Biogeosciences 10, 2633–2653 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2014).

  • 12.

    O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).

    ADS 

    Google Scholar
     

  • 13.

    Schmid, M., Hunziker, S. & Wüest, A. Lake surface temperatures in a changing climate: a global sensitivity analysis. Clim. Change 124, 301–315 (2014).

    ADS 

    Google Scholar
     

  • 14.

    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).

    CAS 

    Google Scholar
     

  • 15.

    Müller, B., Bryant, L. D., Matzinger, A. & Wüest, A. Hypolimnetic oxygen depletion in eutrophic lakes. Environ. Sci. Technol. 46, 9964–9971 (2012).

    PubMed 

    Google Scholar
     

  • 16.

    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Butcher, J. B., Nover, D., Johnson, T. E. & Clark, C. M. Sensitivity of lake thermal and mixing dynamics to climate change. Clim. Change 129, 295–305 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Kirillin, G. Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes. Boreal Environ. Res. 15, 279–293 (2010).


    Google Scholar
     

  • 19.

    Straile, D., Jöhnk, K. & Rossknecht, H. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnol. Oceanogr. 48, 1432–1438 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12, 271–276 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Boehrer, B., Fukuyama, R. & Chikita, K. Stratification of very deep, thermally stratified lakes. Geophys. Res. Lett. 35, 8–12 (2008).


    Google Scholar
     

  • 22.

    Boehrer, B. & Schultze, M. Stratification of lakes. Rev. Geophys. 46, 1–27 (2008).


    Google Scholar
     

  • 23.

    Boehrer, B., Rohden, C. Von & Schultze, M. Ecology of Meromictic Lakes. 228 (2017).

  • 24.

    Hall, K. J. & Northcote, T. G. Meromictic lakes. In Encyclopedia of Lakes and Reservoirs 519–524 (Springer, 2012).

  • 25.

    Søndergaard, M., Jensen, J. P. & Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509, 135–145 (2003).


    Google Scholar
     

  • 26.

    Hupfer, M. & Lewandowski, J. Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. Int. Rev. Hydrobiol. 93, 415–432 (2008).

    CAS 

    Google Scholar
     

  • 27.

    Yankova, Y., Neuenschwander, S., Köster, O. & Posch, T. Abrupt stop of deep water turnover with lake warming: drastic consequences for algal primary producers. Sci. Rep. 7, 13770 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Lehmann, M. et al. Powering up the “biogeochemical engine”: the impact of exceptional ventilation of a deep meromictic lake on the lacustrine redox, nutrient, and methane balances. Front. Earth Sci. 3, 45 (2015).

    ADS 

    Google Scholar
     

  • 29.

    Anneville, O., Gammeter, S. & Straile, D. Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri-alpine lakes. Freshw. Biol. 50, 1731–1746 (2005).

    CAS 

    Google Scholar
     

  • 30.

    Posch, T., Köster, O., Salcher, M. M. & Pernthaler, J. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat. Clim. Change 2, 809 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Winder, M. Lake warming mimics fertilization. Nat. Clim. Change 2, 771 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Coats, R., Perez-Losada, J., Schladow, G., Richards, R. & Goldman, C. The warming of Lake Tahoe. Clim. Change 76, 121–148 (2006).

    ADS 

    Google Scholar
     

  • 33.

    Kraemer, B. M. et al. Morphometry and average temperature affect lake stratification responses to climate change. Geophys. Res. Lett. 42, 4981–4988 (2015).

    ADS 

    Google Scholar
     

  • 34.

    Verburg, P., Hecky, R. E. & Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 301, 505–507 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    North, R. P., North, R. L., Livingstone, D. M., Köster, O. & Kipfer, R. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Change Biol. 20, 811–823 (2014).

    ADS 

    Google Scholar
     

  • 36.

    Salmaso, N. Effects of climatic fluctuations and vertical mixing on the interannual trophic variability of Lake Garda, Italy. Limnol. Oceanogr. 50, 553–565 (2005).

    ADS 

    Google Scholar
     

  • 37.

    Kõiv, T., Nõges, T. & Laas, A. Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs. Hydrobiologia 660, 105–115 (2011).


    Google Scholar
     

  • 38.

    Walker, K. F. & Likens, G. E. Meromixis and a reconsidered typology of lake circulation patterns. Int. Vereinigung für Theor. und Angew. Limnol. Verhandlungen 19, 442–458 (1975).


    Google Scholar
     

  • 39.

    Rogora, M. et al. Climatic effects on vertical mixing and deep-water oxygen content in the subalpine lakes in Italy. Hydrobiologia https://doi.org/10.1007/s10750-018-3623-y (2018).

    Article 

    Google Scholar
     

  • 40.

    Valerio, G., Pilotti, M., Barontini, S. & Leoni, B. Sensitivity of the multiannual thermal dynamics of a deep pre-alpine lake to climatic change. Hydrol. Process. 29, 767–779 (2015).

    ADS 

    Google Scholar
     

  • 41.

    Rapuc, W. et al. Holocene-long record of flood frequency in the Southern Alps (Lake Iseo, Italy) under human and climate forcing. Glob. Planet. Change 175, 160–172 (2019).

    ADS 

    Google Scholar
     

  • 42.

    Gächter, R. & Müller, B. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnol. Oceanogr. 48, 929–933 (2003).

    ADS 

    Google Scholar
     

  • 43.

    Katsev, S. & Dittrich, M. Modeling of decadal scale phosphorus retention in lake sediment under varying redox conditions. Ecol. Model. 251, 246–259 (2013).

    CAS 

    Google Scholar
     

  • 44.

    Garibaldi, L., Mezzanotte, V., Brizzio, M. C., Rogora, M. & Mosello, R. The trophic evolution of Lake Iseo as related to its holomixis. J. Limnol. 58, 10 (1999).


    Google Scholar
     

  • 45.

    Leoni, B. et al. Long-term studies for evaluating the impacts of natural and anthropic stressors on limnological features and the ecosystem quality of Lake Iseo. Adv. Oceanogr. Limnol. https://doi.org/10.4081/aiol.2019.8622 (2019).

    Article 

    Google Scholar
     

  • 46.

    Wilhelm, S. & Adrian, R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw. Biol. 53, 226–237 (2008).

    CAS 

    Google Scholar
     

  • 47.

    Pilotti, M., Valerio, G. & Leoni, B. Data set for hydrodynamic lake model calibration: a deep prealpine case. Water Resour. Res. 49, 7159–7163 (2013).

    ADS 

    Google Scholar
     

  • 48.

    Hutchinson, G. E. Treatise on limnology; geography, physics of lakes. In Treatise on Limnology; Geography, Physics of Lakes (Wiley, New York, 1975).

  • 49.

    Livingstone, D. M. A change of climate provokes a change of paradigm: taking leave of two tacit assumptions about physical lake forcing. Int. Rev. Hydrobiol. 93, 404–414 (2008).


    Google Scholar
     

  • 50.

    Livingstone, D. M. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Change 57, 205–225 (2003).


    Google Scholar
     

  • 51.

    Peeters, F., Livingstone, D. M., Goudsmit, G.-H., Kipfer, R. & Forster, R. Modeling 50 years of historical temperature profiles in a large central European lake. Limnol. Oceanogr. 47, 186–197 (2002).

    ADS 

    Google Scholar
     

  • 52.

    Foley, B., Jones, I. D., Maberly, S. C. & Rippey, B. Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshw. Biol. 57, 278–289 (2011).


    Google Scholar
     

  • 53.

    Salmaso, N., Boscaini, A., Capelli, C. & Cerasino, L. Ongoing ecological shifts in a large lake are driven by climate change and eutrophication: evidences from a three-decade study in Lake Garda. Hydrobiologia 824, 177–195 (2018).

    CAS 

    Google Scholar
     

  • 54.

    Vinçon-Leite, B., Lemaire, B. J., Khac, V. T. & Tassin, B. Long-term temperature evolution in a deep sub-alpine lake, Lake Bourget, France: how a one-dimensional model improves its trend assessment. Hydrobiologia 731, 49–64 (2014).


    Google Scholar
     

  • 55.

    Livingstone, D. M. An example of the simultaneous occurrence of climate-driven “sawtooth” deep-water warming/cooling episodes in several Swiss lakes. SIL Proc. 1922–2010(26), 822–828 (1997).


    Google Scholar
     

  • 56.

    Martin-Creuzburg, D., von Elert, E. & Hoffmann, K. H. Nutritional constraints at the cyanobacteria—Daphnia magna interface: the role of sterols. Limnol. Oceanogr. 53, 456–468 (2008).

    ADS 

    Google Scholar
     

  • 57.

    Zadereev, E. S., Boehrer, B. & Gulati, R. D. Introduction: meromictic lakes, their terminology and geographic distribution. In: Ecology of Meromictic Lakes, Vol. 228, 1–11 (Springer, 2017).

  • 58.

    Bryhn, A. C., Girel, C., Paolini, G. & Jacquet, S. Predicting future effects from nutrient abatement and climate change on phosphorus concentrations in Lake Bourget, France. Ecol. Model. 221, 1440–1450 (2010).

    CAS 

    Google Scholar
     

  • 59.

    Kourzeneva, E., Asensio, H., Martin, E. & Faroux, S. Global gridded dataset of lake coverage and lake depth for use in numerical weather prediction and climate modelling. Tellus A Dyn. Meteorol. Oceanogr. 64, 15640 (2012).


    Google Scholar
     

  • 60.

    Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).

    ADS 

    Google Scholar
     

  • 61.

    Cael, B. B., Heathcote, A. J. & Seekell, D. A. The volume and mean depth of Earth’s lakes. Geophys. Res. Lett. 44, 209–218 (2017).

    ADS 

    Google Scholar
     

  • 62.

    Brett, M. T. & Benjamin, M. M. A review and reassessment of lake phosphorus retention and the nutrient loading concept. Freshw. Biol. 53, 194–211 (2007).


    Google Scholar
     

  • 63.

    Bryhn, A. C. A morphometrically based method for predicting water layer boundaries in meromictic lakes. Hydrobiologia 636, 413–419 (2009).

    CAS 

    Google Scholar
     

  • 64.

    Rempfer, J. et al. The effect of the exceptionally mild European winter of 2006–2007 on temperature and oxygen profiles in lakes in Switzerland: a foretaste of the future?. Limnol. Oceanogr. 55, 2170–2180 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Jenny, J. P. et al. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob. Change Biol. 22, 1481–1489 (2016).

    ADS 

    Google Scholar
     

  • 66.

    Kraemer, B. M., Mehner, T. & Adrian, R. Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes. Sci. Rep. 7, 10762 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Bonomi, G. & Gerletti, M. Lake Iseo: a first limnological survey (temperature, chemistry, plankton and benthos). Mem. 1st. Ital. Idrobiol. 22, 149–175 (1967).


    Google Scholar
     

  • 68.

    Pilotti, M., Simoncelli, S. & Valerio, G. A simple approach to the evaluation of the actual water renewal time of natural stratified lakes. Water Resour. Res. 50, 2830–2849 (2014).

    ADS 

    Google Scholar
     

  • 69.

    Ambrosetti, W. & Barbanti, L. Evolution towards meromixis of Lake Iseo (Northern Italy) as revealed by its stability trend. J. Limnol. 64, 1 (2005).


    Google Scholar
     

  • 70.

    Hupfer, M., Reitzel, K., Kleeberg, A. & Lewandowski, J. Long-term efficiency of lake restoration by chemical phosphorus precipitation: scenario analysis with a phosphorus balance model. Water Res. 97, 153–161 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Hesslein, R. H. An in situ sampler for close interval pore water studies1. Limnol. Oceanogr. 21, 912–914 (1976).

    ADS 
    CAS 

    Google Scholar
     

  • 72.

    Psenner, R., Pucsko, R. & Sage, M. Fractionation of Organic and Inorganic Phosphorus Compounds in Lake Sediments, An Attempt to Characterize Ecologically Important Fractions (Die Fraktionierung Organischer und Anorganischer Phosphorverbindungen von Sedimenten, Versuch einer Definition Okologisch Wichtiger Fraktionen). Arch. fur Hydrobiol. 1 (1984).

  • 73.

    Hupfer, M., Gächter, R. & Giovanoli, R. Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquat. Sci. 57, 305–324 (1995).


    Google Scholar
     

  • 74.

    Reitzel, K., Hansen, J., Andersen, F. Ø, Hansen, K. S. & Jensen, H. S. Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment. Environ. Sci. Technol. https://doi.org/10.1021/ES0485964 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • 75.

    Berg, P., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 76.

    Yuan-Hui, L. & Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38, 703–714 (1974).

    ADS 

    Google Scholar
     

  • 77.

    R Core Team. R: a language and environment for statistical computing (2013).

  • 78.

    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Håkanson, L. The importance of lake morphometry for the structure and function of lakes. Int. Rev. Hydrobiol. 90, 433–461 (2005).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *