CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Mills, K. E. et al. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26, 191–195 (2013).


    Google Scholar
     

  • 2.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).


    Google Scholar
     

  • 3.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).


    Google Scholar
     

  • 4.

    Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: Extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411 (2019).


    Google Scholar
     

  • 5.

    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).


    Google Scholar
     

  • 6.

    Benthuysen, J. A., Oliver, E. C. J., Chen, K. & Wernberg, T. Advances in understanding marine heatwaves and their impacts. Front. Mar. Sci. 7, 147 (2020).


    Google Scholar
     

  • 7.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).


    Google Scholar
     

  • 8.

    Wernberg, T. Marine heatwave drives collapse of kelp forests in Western Australia. In Ecosystem Collapse and Climate Change. Ecological Studies (eds. Canadell, J. G. & Jackson, R. B.) (Springer-Nature, 2020).

  • 9.

    Pearce, A. et al. The “Marine Heat Wave” Off Western Australia During the Summer of 2010/11. Fisheries Research Report No. 222 (40pp) (Department of Fisheries, Western Australia, 2011)

  • 10.

    Olita, A. et al. Effects of the 2003 European heatwave on the Central Mediterranean Sea: surface fluxes and the dynamical response. Ocean Sci. 3, 273–289 (2007).


    Google Scholar
     

  • 11.

    Pearce, A. F. & Feng, M. The rise and fall of the ‘marine heat wave’ off Western Australia during the summer of 2010/2011. J. Mar. Syst. 111–112, 139–156 (2013).


    Google Scholar
     

  • 12.

    Chen, K., Gawarkiewicz, G. G., Lentz, S. J. & Bane, J. M. Diagnosing the warming of the Northeastern U.S. Coastal Ocean in 2012: A linkage between the atmospheric jet stream variability and ocean response. J. Geophys. Res. Oceans 119, 218–227 (2014).


    Google Scholar
     

  • 13.

    Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101 (2017).


    Google Scholar
     

  • 14.

    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).


    Google Scholar
     

  • 15.

    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).


    Google Scholar
     

  • 16.

    Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep British Columbia fjord. Geophys. Res. Lett. 45, 9757–9764 (2018).


    Google Scholar
     

  • 17.

    Reed, D. et al. Extreme warming challenges sentinel status of kelp forests as indicators of climate change. Nat. Commun. 7, 13757 (2016).


    Google Scholar
     

  • 18.

    Jacox, M., Tommasi, D., Alexander, M., Hervieux, G. & Stock, C. Predicting the evolution of the 2014-16 California Current System marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. 6, 497 (2019).


    Google Scholar
     

  • 19.

    Lee, T. et al. Record warming in the South Pacific and western Antarctica associated with the strong central-Pacific El Niño in 2009–10. Geophys. Res. Lett. 37, L19704 (2010).


    Google Scholar
     

  • 20.

    Benthuysen, J. A., Oliver, E. C. J., Feng, M. & Marshall, A. G. Extreme marine warming across tropical Australia during austral summer 2015–2016. J. Geophys. Res. Oceans 123, 1301–1326 (2018).


    Google Scholar
     

  • 21.

    Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).


    Google Scholar
     

  • 22.

    Gurgel, C. F. D., Camacho, O., Minne, A. J. P., Wernberg, T. & Coleman, M. A. Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol. 30, 1199–1206 (2020).


    Google Scholar
     

  • 23.

    Caputi, N. et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol. 6, 3583–3593 (2016).


    Google Scholar
     

  • 24.

    Caputi, N. et al. Factors affecting the recovery of invertebrate stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci. 6, 484 (2019).


    Google Scholar
     

  • 25.

    Caputi, N. et al. Management Implications of Climate Change Effect on Fisheries in Western Australia, Part 2: Case Studies. Fisheries Research Report No. 261 (156pp) (Department of Fisheries, Western Australia, 2015).

  • 26.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).


    Google Scholar
     

  • 27.

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).


    Google Scholar
     

  • 28.

    Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 84 (2019).


    Google Scholar
     

  • 29.

    Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 499 (2019).


    Google Scholar
     

  • 30.

    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).


    Google Scholar
     

  • 31.

    Zisserson, B. & Cook, A. Impact of bottom water temperature change on the southernmost snow crab fishery in the Atlantic Ocean. Fish. Res. 195, 12–18 (2017).


    Google Scholar
     

  • 32.

    Caputi, N., Jackson, G. & Pearce, A. The Marine Heat Wave Off Western Australia During the Summer of 2010/11 – 2 Years On. Fisheries Research Report No. 250 (40pp) (Department of Fisheries, Western Australia, 2014).

  • 33.

    Cavole, L. M. et al. Biological Impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).


    Google Scholar
     

  • 34.

    Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536 (2020).


    Google Scholar
     

  • 35.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).


    Google Scholar
     

  • 36.

    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).


    Google Scholar
     

  • 37.

    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).


    Google Scholar
     

  • 38.

    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).


    Google Scholar
     

  • 39.

    Rodrigues, R. R., Taschetto, A. S., Sen Gupta, A. & Foltz, G. R. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci. 12, 620–626 (2019).


    Google Scholar
     

  • 40.

    Black, E., Blackburn, M., Harrison, R. G., Hoskins, B. J. & Methven, J. Factors contributing to the summer 2003 European heatwave. Weather 59, 217–223 (2004).


    Google Scholar
     

  • 41.

    Chen, K., Gawarkiewicz, G., Kwon, Y.-O. & Zhang, W. The role of atmospheric forcing versus ocean advection during the extreme warming of the Northeast U.S. continental shelf in 2012. J. Geophys. Res. Oceans 120, 4324–4339 (2015).


    Google Scholar
     

  • 42.

    Salinger, M. J. et al. The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: Drivers, mechanisms and impacts. Environ. Res. Lett. 14, 044023 (2019).


    Google Scholar
     

  • 43.

    Perkins-Kirkpatrick, S. E. et al. The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave. Bull. Am. Meteorol. Soc. 100, S105–S110 (2019).


    Google Scholar
     

  • 44.

    Sparnocchia, S., Schiano, M. E., Picco, P., Bozzano, R. & Cappelletti, A. The anomalous warming of summer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean). Ann. Geophys. 24, 443–452 (2006).


    Google Scholar
     

  • 45.

    Swain, D. L. et al. The extraordinary California drought of 2013/2014: Character, context, and the role of climate change. Bull. Am. Meteorol. Soc. 95, S3–S7 (2014).


    Google Scholar
     

  • 46.

    Alexander, M. A., Deser, C. & Timlin, M. S. The reemergence of SST anomalies in the North Pacific Ocean. J. Clim. 12, 2419–2433 (1999).


    Google Scholar
     

  • 47.

    Benthuysen, J., Feng, M. & Zhong, L. Spatial patterns of warming off Western Australia during the 2011 Ningaloo Niño: Quantifying impacts of remote and local forcing. Cont. Shelf Res. 91, 232–246 (2014).


    Google Scholar
     

  • 48.

    Kataoka, T., Tozuka, T. & Yamagata, T. Generation and decay mechanisms of Ningaloo Niño/Niña. J. Geophys. Res. Oceans 122, 8913–8932 (2017).


    Google Scholar
     

  • 49.

    Behrens, E., Fernandez, D. & Sutton, P. Meridional oceanic heat transport influences marine heatwaves in the Tasman Sea on interannual to decadal timescales. Front. Mar. Sci. 6, 228 (2019).


    Google Scholar
     

  • 50.

    Scannell, H. A., Pershing, A. J., Alexander, M. A., Thomas, A. C. & Mills, K. E. Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett. 43, 2069–2076 (2016).


    Google Scholar
     

  • 51.

    Hartmann, D. L. Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett. 42, 1894–1902 (2015).


    Google Scholar
     

  • 52.

    Marshall, A. G. & Hendon, H. H. Impacts of the MJO in the Indian Ocean and on the Western Australian coast. Clim. Dyn. 42, 579–595 (2014).


    Google Scholar
     

  • 53.

    Zhang, N., Feng, M., Hendon, H. H., Hobday, A. J. & Zinke, J. Opposite polarities of ENSO drive distinct patterns of coral bleaching potentials in the southeast Indian Ocean. Sci. Rep. 7, 2443 (2017).


    Google Scholar
     

  • 54.

    Kataoka, T., Tozuka, T., Behera, S. & Yamagata, T. On the Ningaloo Niño/Niña. Clim. Dyn. 43, 1463–1482 (2013).


    Google Scholar
     

  • 55.

    Holbrook, N. J., Goodwin, I. D., McGregor, S., Molina, E. & Power, S. B. ENSO to multi-decadal time scale changes in East Australian Current transports and Fort Denison sea level: Oceanic Rossby waves as the connecting mechanism. Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 547–558 (2011).


    Google Scholar
     

  • 56.

    Li, Z., Holbrook, N. J., Zhang, X., Oliver, E. C. J. & Cougnon, E. A. Remote forcing of Tasman Sea marine heatwaves. J. Clim. 33, 5337–5354 (2020).


    Google Scholar
     

  • 57.

    Schaeffer, A. & Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: The role of stratification and local winds. Geophys. Res. Lett. 44, 5025–5033 (2017).


    Google Scholar
     

  • 58.

    Elzahaby, Y. & Schaeffer, A. Observational Insight Into the subsurface anomalies of marine heatwaves. Front. Mar. Sci. 6, 745 (2019).


    Google Scholar
     

  • 59.

    Ridgway, K. R., Dunn, J. R. & Wilkin, J. L. Ocean interpolation by four-dimensional weighted least squares — Application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).


    Google Scholar
     

  • 60.

    Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr. 82, 81–100 (2009).


    Google Scholar
     

  • 61.

    Moltmann, T. The “coastal data paradox”. J. Ocean Technol. 13, 148–149 (2018).


    Google Scholar
     

  • 62.

    Oliver, E. C. J. et al. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Prog. Oceanogr. 161, 116–130 (2018).


    Google Scholar
     

  • 63.

    Darmaraki, S. et al. Future evolution of marine heatwaves in the Mediterranean Sea. Clim. Dyn. 53, 1371–1392 (2019).


    Google Scholar
     

  • 64.

    Schlegel, R. W., Oliver, E. C. J., Hobday, A. J. & Smit, A. J. Detecting marine heatwaves with sub-optimal data. Front. Mar. Sci. 6, 737 (2019).


    Google Scholar
     

  • 65.

    Salinger, J. et al. Decadal-scale forecasting of climate drivers for marine applications. Adv. Mar. Biol. 74, 1–68 (2016).


    Google Scholar
     

  • 66.

    Dunstan, P. K. et al. How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States? Mar. Policy 88, 295–302 (2018).


    Google Scholar
     

  • 67.

    Smith, G. & Spillman, C. New high-resolution sea surface temperature forecasts for coral reef management on the Great Barrier Reef. Coral Reefs 38, 1039–1056 (2019).


    Google Scholar
     

  • 68.

    White, C. J. et al. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorol. Appl. 24, 315–325 (2017).


    Google Scholar
     

  • 69.

    Hobday, A. J., Spillman, C. M., Paige Eveson, J. & Hartog, J. R. Seasonal forecasting for decision support in marine fisheries and aquaculture. Fish. Oceanogr. 25, 45–56 (2016).


    Google Scholar
     

  • 70.

    Game, E. T., Watts, M. E., Wooldridge, S. & Possingham, H. P. Planning for persistence in marine reserves: a question of catastrophic importance. Ecol. Appl. 18, 670–680 (2008).


    Google Scholar
     

  • 71.

    Johnson, C. R., Chabot, R. H., Marzloff, M. P. & Wotherspoon, S. Knowing when (not) to attempt ecological restoration. Restor. Ecol. 25, 140–147 (2017).


    Google Scholar
     

  • 72.

    Tommasi, D. et al. Managing living marine resources in a dynamic environment: the role of seasonal to decadal climate forecasts. Prog. Oceanogr. 152, 15–49 (2017).


    Google Scholar
     

  • 73.

    Marshall, A. G., Hendon, H. H., Feng, M. & Schiller, A. Initiation and amplification of the Ningaloo Niño. Clim. Dyn. 45, 2367–2385 (2015).


    Google Scholar
     

  • 74.

    D’Andrea, F. et al. Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Clim. Dyn. 14, 385–407 (1998).


    Google Scholar
     

  • 75.

    Scaife, A. A., Woollings, T., Knight, J., Martin, G. & Hinton, T. Atmospheric blocking and mean biases in climate models. J. Clim. 23, 6143–6152 (2010).


    Google Scholar
     

  • 76.

    Davini, P. & D’Andrea, F. Northern Hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements? J. Clim. 29, 8823–8840 (2016).


    Google Scholar
     

  • 77.

    Kwon, Y. O., Camacho, A., Martinez, C. & Seo, H. North Atlantic winter eddy-driven jet and atmospheric blocking variability in the Community Earth System Model version 1 Large Ensemble simulations. Clim. Dyn. 51, 3275–3289 (2018).


    Google Scholar
     

  • 78.

    Pilo, G. S., Mata, M. M. & Azevedo, J. L. L. Eddy surface properties and propagation at Southern Hemisphere western boundary current systems. Ocean Sci. 11, 629–641 (2015).


    Google Scholar
     

  • 79.

    Oliver, E. C. J., Wotherspoon, S. J., Chamberlain, M. A. & Holbrook, N. J. Projected Tasman Sea extremes in sea surface temperature through the twenty-first century. J. Clim. 27, 1980–1998 (2014).


    Google Scholar
     

  • 80.

    Oliver, E. C. J., O’Kane, T. J. & Holbrook, N. J. Projected changes to Tasman Sea eddies in a future climate. J. Geophys. Res. Oceans 120, 7150–7165 (2015).


    Google Scholar
     

  • 81.

    Hu, Z-Z., Kumar, A., Jha, B., Zhu, J. & Huang, B. Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific ocean during 2014–16. J. Clim. 30, 689–702 (2017).


    Google Scholar
     

  • 82.

    Spillman, C. M. Operational real-time seasonal forecasts for coral reef management. J. Oper. Oceanogr. 4, 13–22 (2011).


    Google Scholar
     

  • 83.

    Yang, Y. et al. A CFCC-LSTM model for sea surface temperature prediction. IEEE Geosci. Remote Sens. Lett. 15, 207–211 (2018).


    Google Scholar
     

  • 84.

    Hobday, A. J. et al. Ethical considerations and unanticipated consequences associated with ecological forecasting for marine resources. ICES J. Mar. Sci. 76, 1244–1256 (2019).


    Google Scholar
     

  • 85.

    Quinting, J. F. & Reeder, M. J. Southeastern Australian heat waves from a trajectory viewpoint. Mon. Wea. Rev. 145, 4109–4125 (2017).


    Google Scholar
     

  • 86.

    Quinting, J. F., Parker, T. J. & Reeder, M. J. Two synoptic routes to subtropical heat waves as illustrated in the Brisbane region of Australia. Geophys. Res. Lett. 45, 10,700–10,708 (2018).


    Google Scholar
     

  • 87.

    Doblin, M. A. & Van Sebille, E. Drift in ocean currents impacts intergenerational microbial exposure to temperature. Proc. Natl Acad. Sci. USA 113, 5700–5705 (2016).


    Google Scholar
     

  • 88.

    Zhang, X., Cornuelle, B. & Roemmich, D. Sensitivity of western boundary transport at the mean north equatorial current bifurcation latitude to wind forcing. J. Phys. Oceanogr. 42, 2056–2072 (2012).


    Google Scholar
     

  • 89.

    Pecl, G. T. et al. Autonomous adaptation to climate-driven change in marine biodiversity in a global marine hotspot. Ambio 48, 1498–1515 (2019).


    Google Scholar
     

  • 90.

    Serrao-Neumann, S. et al. Marine governance to avoid tipping points: can we adapt the adaptability envelope? Mar. Policy 65, 56–67 (2016).


    Google Scholar
     

  • 91.

    Hobday, A. J. et al. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front. Mar. Sci. 5, 137 (2018).


    Google Scholar
     

  • 92.

    Wernberg, T. et al. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 400, 7–16 (2011).


    Google Scholar
     

  • 93.

    Strain, E. M. A., Thomson, R. J., Micheli, F., Mancuso, F. P. & Airoldi, L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Change Biol. 20, 3300–3312 (2014).


    Google Scholar
     

  • 94.

    Bates, A. E. et al. Resilience and signatures of tropicalization in protected reef fish communities. Nat. Clim. Change 4, 62–67 (2014).


    Google Scholar
     

  • 95.

    Connell, S. D. & Ghedini, G. Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol. Evol. 30, 513–515 (2015).


    Google Scholar
     

  • 96.

    Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: Why don’t marine protected areas improve reef resilience? Annu. Rev. Mar. Sci. 11, 307–334 (2019).


    Google Scholar
     

  • 97.

    Coleman, M. A. & Goold, H. D. Harnessing synthetic biology for kelp forest conservation1. J. Phycol. 55, 745–751 (2019).


    Google Scholar
     

  • 98.

    Vergés, A. et al. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013 (2019).


    Google Scholar
     

  • 99.

    Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. F. in World Seas: An Environmental Evaluation 2nd edn (ed. Sheppard, C.) 57–78 (Academic, 2019).

  • 100.

    Filbee-Dexter, K. & Smajdor, A. Ethics of assisted evolution in marine conservation. Front. Mar. Sci. 6, 20 (2019).


    Google Scholar
     

  • 101.

    Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018).


    Google Scholar
     

  • 102.

    Chandrapavan, A., Caputi, N. & Kangas, M. I. The decline and recovery of a crab population from an extreme marine heatwave and a changing climate. Front. Mar. Sci. 6, 510 (2019).


    Google Scholar
     

  • 103.

    Oliver, E. C. J. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 53, 1653–1659 (2019).


    Google Scholar
     

  • 104.

    Jacox, M. G. Marine heatwaves in a changing climate. Nature 571, 485–487 (2019).


    Google Scholar
     

  • 105.

    Vinagre, C. et al. Upper thermal limits and warming safety margins of coastal marine species – Indicator baseline for future reference. Ecol. Indic. 102, 644–649 (2019).


    Google Scholar
     

  • 106.

    Nakamura, N. & Huang, C. S. Y. Atmospheric blocking as a traffic jam in the jet stream. Science 361, 42–47 (2018).


    Google Scholar
     

  • 107.

    Mann, M. E. et al. Projected changes in persistent extreme summer weather events: the role of quasi-resonant amplification. Sci. Adv. 4, eaat3272 (2018).


    Google Scholar
     

  • 108.

    Straub, S. C. et al. Resistance, extinction, and everything in between – the diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).


    Google Scholar
     

  • 109.

    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).


    Google Scholar
     

  • 110.

    Jacox, M. G. et al. Seasonal-to-interannual prediction of North American coastal marine ecosystems: Forecast methods, mechanisms of predictability, and priority developments. Prog. Oceanogr. 183, 102307 (2020).


    Google Scholar
     

  • 111.

    Feng, M., McPhaden, M. J., Xie, S. P. & Hafner, J. La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep. 3, 1227 (2013).


    Google Scholar
     

  • 112.

    Gammelsrød, T., Bartholomae, C. H., Boyer, D. C., Filipe, V. L. L. & O’Toole, M. J. Intrusion of warm surface water along the Angolan Namibian coast in February–March 1995: the 1995 Benguela Niño. S. Afr. J. Mar. Sci. 19, 41–56 (1998).


    Google Scholar
     

  • 113.

    Spencer, T., Teleki, K. A., Bradshaw, C. & Spalding, M. D. Coral bleaching in the southern Seychelles during the 1997–1998 Indian Ocean warm event. Mar. Pollut. Bull. 40, 569–586 (2000).


    Google Scholar
     

  • 114.

    McPhaden, M. J. Genesis and evolution of the 1997-98 El Niño. Science 283, 950–954 (1999).


    Google Scholar
     

  • 115.

    Vivekanandan, E., Hussain Ali, M., Jasper, B. & Rajagopalan, M. Thermal thresholds for coral bleaching in the Indian seas. J. Mar. Biol. Assoc. India 50, 209–214 (2008).


    Google Scholar
     

  • 116.

    Krishnan, P. et al. Elevated sea surface temperature during May 2010 induces mass bleaching of corals in the Andaman. Curr. Sci. 100, 111–117 (2011).


    Google Scholar
     

  • 117.

    Collins, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 589–655 (Intergovernmental Panel on Climate Change (IPCC), 2019).

  • 118.

    Frölicher, T. L. in Predicting Future Oceans (eds Cisneros-Montemayor, A. M., Cheung, W. W. L. & Yoshitaka, O.) 53–60 (Elsevier, 2019).

  • 119.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).


    Google Scholar
     

  • 120.

    Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).


    Google Scholar
     

  • 121.

    Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2014).


    Google Scholar
     

  • 122.

    Laloyaux, P., Balmaseda, M., Dee, D., Mogensen, K. & Janssen, P. A coupled data assimilation system for climate reanalysis. Q. J. R. Meteorol. Soc. 142, 65–78 (2016).


    Google Scholar
     

  • 123.

    Giese, B. S., Seidel, H. F., Compo, G. P. & Sardeshmukh, P. D. An ensemble of ocean reanalyses for 1815–2013 with sparse observational input. J. Geophys. Res. Oceans 121, 6891–6910 (2016).


    Google Scholar
     

  • 124.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).


    Google Scholar
     

  • 125.

    Griffin, C., Beggs H. & Majewski, L. GHRSST compliant AVHRR SST products over the Australian region – Version 1, Technical Report, 151 pp (Bureau of Meteorology, Melbourne, Australia, 2017).

  • 126.

    Wijffels, S. E. et al. A fine spatial-scale sea surface temperature atlas of the Australian regional seas (SSTAARS): Seasonal variability and trends around Australasia and New Zealand revisited. J. Mar. Syst. 187, 156–196 (2018).


    Google Scholar
     

  • 127.

    Oke, P. R. et al. Towards a dynamically balanced eddy-resolving ocean reanalysis: BRAN3. Ocean Model. 67, 52–70 (2013).


    Google Scholar
     

  • 128.

    Wessel, P. & Smith, W. H. F. A global self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741–8743 (1996).


    Google Scholar
     

  • 129.

    Perkins, S. E. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26, 4500–4517 (2013).


    Google Scholar
     

  • 130.

    Pershing, A. J. et al. Challenges to natural and human communities from surprising ocean temperatures. Proc. Natl Acad. Sci. USA 116, 18378–18383 (2019).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *