CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Ungarish, M. An introduction to gravity currents and intrusions. (Chapman and Hall/CRC, 2009).

  • 2.

    Lowe, D. R. Sediment gravity flows; II, Depositional models with special reference to the deposits of high-density turbidity currents. J. Sediment. Res. 52, 279–297. https://doi.org/10.1306/212F7F31-2B24-11D7-8648000102C1865D (1982).

    Article 

    Google Scholar
     

  • 3.

    Thorpe, S. Gravity currents in the environment and the laboratory. J. Fluid Mech. 352, 374–378. https://doi.org/10.1017/S0022112097227527 (1997).

    ADS 
    Article 

    Google Scholar
     

  • 4.

    Meiburg, E. & Kneller, B. Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42, 135–156. https://doi.org/10.1146/annurev-fluid-121108-145618 (2010).

    ADS 
    Article 
    MATH 

    Google Scholar
     

  • 5.

    Pilskaln, C. H., Churchill, J. H. & Mayer, L. M. Resuspension of sediment by bottom trawling in the Gulf of Maine and potential geochemical consequences. Conserv. Biol. 12, 1223–1229. https://doi.org/10.1046/j.1523-1739.1998.0120061223.x (1998).

    Article 

    Google Scholar
     

  • 6.

    Cenedese, C. & Adduce, C. Mixing in a density-driven current flowing down a slope in a rotating fluid. J. Fluid Mech. 604, 369–388. https://doi.org/10.1017/S0022112008001237 (2008).

    ADS 
    Article 
    MATH 

    Google Scholar
     

  • 7.

    Laanearu, J., Cuthbertson, A. J. & Davies, P. A. Dynamics of dense gravity currents and mixing in an up-sloping and converging vee-shaped channel. J. Hydraul. Res. 52, 67–80. https://doi.org/10.1080/00221686.2013.841779 (2014).

    Article 

    Google Scholar
     

  • 8.

    Gildeh, H. K., Mohammadian, A., Nistor, I. & Qiblawey, H. Numerical modeling of 30 and 45 inclined dense turbulent jets in stationary ambient. Environ. Fluid Mech. 15, 537–562. https://doi.org/10.1007/s10652-014-9372-1 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Kheirkhah Gildeh, H., Mohammadian, A., Nistor, I. & Qiblawey, H. Numerical modeling of turbulent buoyant wall jets in stationary ambient water. J. Hydraul. Eng. 140, 04014012. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000871 (2014).

    Article 

    Google Scholar
     

  • 10.

    Inghilesi, R., Adduce, C., Lombardi, V., Roman, F. & Armenio, V. Axisymmetric three-dimensional gravity currents generated by lock exchange. J. Fluid Mech. 851, 507–544. https://doi.org/10.1017/jfm.2018.500 (2018).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 11.

    Lombardi, V., Adduce, C. & La Rocca, M. Unconfined lock-exchange gravity currents with variable lock width: laboratory experiments and shallow-water simulations. J. Hydraul. Res. 56, 399–411. https://doi.org/10.1080/00221686.2017.1372817 (2018).

    Article 

    Google Scholar
     

  • 12.

    Ottolenghi, L., Prestininzi, P., Montessori, A., Adduce, C. & La Rocca, M. Lattice Boltzmann simulations of gravity currents. European Journal of Mechanics-B/Fluids 67, 125–136. https://doi.org/10.1016/j.euromechflu.2017.09.003 (2018).

    ADS 
    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • 13.

    Kyrousi, F. et al. Large Eddy Simulations of sediment entrainment induced by a lock-exchange gravity current. Adv. Water Resour. 114, 102–118. https://doi.org/10.1016/j.advwatres.2018.02.002 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Pérez-Díaz, B., Palomar, P., Castanedo, S. & Álvarez, A. PIV-PLIF characterization of nonconfined saline density currents under different flow conditions. J. Hydraul. Eng. 144, 04018063. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001511 (2018).

    Article 

    Google Scholar
     

  • 15.

    Pérez-Díaz, B., Castanedo, S., Palomar, P., Henno, F. & Wood, M. Modeling nonconfined density currents using 3D hydrodynamic models. J. Hydraul. Eng. 145, 04018088. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001563 (2019).

    Article 

    Google Scholar
     

  • 16.

    Zhao, L. et al. Front velocity and front location of lock-exchange gravity currents descending a slope in a linearly stratified environment. J. Hydraul. Eng. 144, 04018068. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001536 (2018).

    Article 

    Google Scholar
     

  • 17.

    Venuleo, S., Pokrajac, D., Schleiss, A. J. & Franca, M. J. Continuously-fed gravity currents propagating over a finite porous substrate. Phys. Fluids 31, 126601. https://doi.org/10.1063/1.5124955 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    De Falco, M., Ottolenghi, L. & Adduce, C. Dynamics of gravity currents flowing up a slope and implications for entrainment. J. Hydraul. Eng. 146, 04020011. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001709 (2020).

    Article 

    Google Scholar
     

  • 19.

    Alexander, J. & Morris, S. Observations on experimental, nonchannelized, high-concentration turbidity currents and variations in deposits around obstacles. J. Sediment. Res. 64, 899–909. https://doi.org/10.1306/D4267F00-2B26-11D7-8648000102C1865D (1994).

    Article 

    Google Scholar
     

  • 20.

    Grue, J. Nonlinear water waves at a submerged obstacle or bottom topography. J. Fluid Mech. 244, 455–476. https://doi.org/10.1017/S0022112092003148 (1992).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    Lane-Serff, G., Beal, L. & Hadfield, T. Gravity current flow over obstacles. J. Fluid Mech. 292, 39–53. https://doi.org/10.1017/S002211209500142X (1995).

    ADS 
    Article 
    MATH 

    Google Scholar
     

  • 22.

    Lawrence, G. A. The hydraulics of steady two-layer flow over a fixed obstacle. J. Fluid Mech. 254, 605–633. https://doi.org/10.1017/S0022112093002277 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Muck, M. T. & Underwood, M. B. Upslope flow of turbidity currents: a comparison among field observations, theory, and laboratory models. Geology 18, 54–57. https://doi.org/10.1130/0091-7613(1990)018<0054:UFOTCA>2.3.CO;2 (1990).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Ottolenghi, L., Adduce, C., Roman, F. & Armenio, V. Analysis of the flow in gravity currents propagating up a slope. Ocean Model. 115, 1–13. https://doi.org/10.1016/j.ocemod.2017.05.001 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Wilson, R. I., Friedrich, H. & Stevens, C. Turbulent entrainment in sediment-laden flows interacting with an obstacle. Phys. Fluids 29, 036603. https://doi.org/10.1063/1.4979067 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Wilson, R. I., Friedrich, H. & Stevens, C. Flow structure of unconfined turbidity currents interacting with an obstacle. Environ. Fluid Mech. 18, 1571–1594. https://doi.org/10.1007/s10652-018-9631-7 (2018).

    Article 

    Google Scholar
     

  • 27.

    Wilson, R. I., Friedrich, H. & Stevens, C. Quantifying propagation characteristics of unconfined turbidity currents interacting with an obstacle within the slumping regime. J. Hydraul. Res. 57, 498–516. https://doi.org/10.1046/j.1365-3091.2000.047s1062.x (2019).

    Article 

    Google Scholar
     

  • 28.

    Woods, A. W., Bursik, M. I. & Kurbatov, A. V. The interaction of ash flows with ridges. Bull. Volcanol. 60, 38–51. https://doi.org/10.1007/s004450050215 (1998).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Morris, S. A. & Alexander, J. Changes in flow direction at a point caused by obstacles during passage of a density current. J. Sediment. Res. 73, 621–629. https://doi.org/10.1306/112502730621 (2003).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Kubo, Y. S. Experimental and numerical study of topographic effects on deposition from two-dimensional, particle-driven density currents. Sedim. Geol. 164, 311–326 (2004).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Khavasi, E., Afshin, H. & Firoozabadi, B. Effect of selected parameters on the depositional behaviour of turbidity currents. J. Hydraul. Res. 50, 60–69. https://doi.org/10.1080/00221686.2011.641763 (2012).

    Article 

    Google Scholar
     

  • 32.

    Khavasi, E., Firoozabadi, B. & Afshin, H. Linear analysis of the stability of particle-laden stratified shear layers. Can. J. Phys. 92, 103–115. https://doi.org/10.1139/cjp-2013-0028 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Amini, P., Khavasi, E. & Asadizanjani, N. Linear stability analysis of two-way coupled particle-laden density current. Can. J. Phys. 95, 291–296. https://doi.org/10.1139/cjp-2016-0568 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Khavasi, E. & Firoozabadi, B. Linear spatial stability analysis of particle-laden stratified shear layers. J. Braz. Soc. Mech. Sci. Eng. 41, 246. https://doi.org/10.1007/s40430-019-1745-4 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Toniolo, H., Parker, G. & Voller, V. Role of ponded turbidity currents in reservoir trap efficiency. J. Hydraul. Eng. 133, 579–595. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(579) (2007).

    Article 

    Google Scholar
     

  • 36.

    Oehy, C. D. & Schleiss, A. J. Control of turbidity currents in reservoirs by solid and permeable obstacles. J. Hydraul. Eng. 133, 637–648. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(637) (2007).

    Article 

    Google Scholar
     

  • 37.

    Choi, S.-U. & Garcıa, M. H. k-ε turbulence modeling of density currents developing two dimensionally on a slope. J. Hydraul. Eng. 128, 55–63. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(55) (2002).

    Article 

    Google Scholar
     

  • 38.

    Sequeiros, O. E. et al. Modeling turbidity currents with nonuniform sediment and reverse buoyancy. Water Resour. Res. https://doi.org/10.1029/2008WR007422 (2009).

    Article 

    Google Scholar
     

  • 39.

    Garcia, M. (American Society of Civil Engineers).

  • 40.

    Paola, C. & Voller, V. R. A generalized Exner equation for sediment mass balance. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2004JF000274 (2005).

    Article 

    Google Scholar
     

  • 41.

    Abd El-Gawad, S. et al. Three-dimensional numerical simulation of turbidity currents in a submarine channel on the seafloor of the Niger Delta slope. J. Geophys. Res. Oceans https://doi.org/10.1029/2011JC007538 (2012).

    Article 

    Google Scholar
     

  • 42.

    Yeh, T.H., Cantero, M., Cantelli, A., Pirmez, C. & Parker, G,. Turbidity current with a roof: success and failure of RANS modeling for turbidity currents under strongly stratified conditions. J. Geophys. Res. Earth Surf. 118, 1975–1998. https://doi.org/10.1002/jgrf.20126 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Stevens, R. J., Wilczek, M. & Meneveau, C. Large-eddy simulation study of the logarithmic law for second-and higher-order moments in turbulent wall-bounded flow. J. Fluid Mech. 757, 888–907. https://doi.org/10.1017/jfm.2014.510 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 44.

    Meiburg, E., Radhakrishnan, S. & Nasr-Azadani, M. Modeling gravity and turbidity currents: computational approaches and challenges. Appl. Mech. Rev. 67, 50. https://doi.org/10.1115/1.4031040 (2015).

    Article 

    Google Scholar
     

  • 45.

    Kundu, P. K. & Cohen, I. M. Fluid mechanics. (Elsevier, 2001).

  • 46.

    Ooi, S., Constantinescu, G. & Weber, L. Numerical simulation of lock-exchange gravity driven flows. IIHR Technical Rep 450 (2006).

  • 47.

    Ooi, S. K., Constantinescu, G. & Weber, L. Numerical simulations of lock-exchange compositional gravity current. J. Fluid Mech. 635, 361–388. https://doi.org/10.1017/S0022112009007599 (2009).

    ADS 
    Article 
    MATH 

    Google Scholar
     

  • 48.

    Ooi, S. K., Constantinescu, G. & Weber, L. J. 2D large-eddy simulation of lock-exchange gravity current flows at high Grashof numbers. J. Hydraul. Eng. 133, 1037–1047. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:9(1037) (2007).

    Article 

    Google Scholar
     

  • 49.

    Pelmard, J., Norris, S. & Friedrich, H. LES grid resolution requirements for the modelling of gravity currents. Comput. Fluids 174, 256–270. https://doi.org/10.1016/j.compfluid.2018.08.005 (2018).

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • 50.

    Pope, S. B. (IOP Publishing, 2001).

  • 51.

    Mahdinia, M., Firoozabadi, B., Farshchi, M., Varnamkhasti, A. G. & Afshin, H. Large eddy simulation of Lock-Exchange flow in a curved channel. J. Hydraul. Eng. 138, 57–70. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000482 (2012).

    Article 

    Google Scholar
     

  • 52.

    Nasr-Azadani, M. & Meiburg, E. Turbidity currents interacting with three-dimensional seafloor topography. J. Fluid Mech. 745, 409–443. https://doi.org/10.1017/jfm.2014.47 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 53.

    Nasr-Azadani, M. M. & Meiburg, E. TURBINS: an immersed boundary, Navier-Stokes code for the simulation of gravity and turbidity currents interacting with complex topographies. Comput. Fluids 45, 14–28. https://doi.org/10.1016/j.compfluid.2010.11.023 (2011).

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • 54.

    Bonometti, T. & Balachandar, S. Effect of Schmidt number on the structure and propagation of density currents. Theoret. Comput. Fluid Dyn. 22, 341. https://doi.org/10.1007/s00162-008-0085-2 (2008).

    ADS 
    Article 
    MATH 

    Google Scholar
     

  • 55.

    Nasr-Azadani, M. M., Meiburg, E. & Kneller, B. Mixing dynamics of turbidity currents interacting with complex seafloor topography. Environ. Fluid Mech. 18, 201–223. https://doi.org/10.1007/s10652-016-9477-9 (2018).

    Article 

    Google Scholar
     

  • 56.

    Dietrich, W. E. Settling velocity of natural particles. Water Resour. Res. 18, 1615–1626. https://doi.org/10.1029/WR018i006p01615 (1982).

    ADS 
    Article 

    Google Scholar
     

  • 57.

    Nasr-Azadani, M., Hall, B. & Meiburg, E. Polydisperse turbidity currents propagating over complex topography: comparison of experimental and depth-resolved simulation results. Comput. Geosci. 53, 141–153. https://doi.org/10.1016/j.cageo.2011.08.030 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 58.

    Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91, 99–164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2 (1963).

    ADS 
    Article 

    Google Scholar
     

  • 59.

    Goodarzi, D., Lari, K. S. & Alighardashi, A. A large eddy simulation study to assess low-speed wind and baffle orientation effects in a water treatment sedimentation basin. Water Sci. Technol. 412–421, 2018. https://doi.org/10.2166/wst.2018.171 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 60.

    Lari, K. S., van Reeuwijk, M. & Maksimović, Č. The role of geometry in rough wall turbulent mass transfer. Heat Mass Transf. 49, 1191–1203. https://doi.org/10.1007/s00231-013-1194-z (2013).

    ADS 
    Article 

    Google Scholar
     

  • 61.

    Farizan, A., Yaghoubi, S., Firoozabadi, B. & Afshin, H. Effect of an obstacle on the depositional behaviour of turbidity currents. J. Hydraul. Res. 57, 75–89. https://doi.org/10.1080/00221686.2018.1459891 (2019).

    Article 

    Google Scholar
     

  • 62.

    Choi, H. & Moin, P. Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24, 011702. https://doi.org/10.1063/1.3676783 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 63.

    Chapman, D. R. Computational aerodynamics development and outlook. AIAA journal 17, 1293–1313. https://doi.org/10.2514/3.61311 (1979).

    ADS 
    Article 
    MATH 

    Google Scholar
     

  • 64.

    Wylie, E. B. & Streeter, V. L. Fluid transients. New York, McGraw-Hill International Book Co., 1978. 401 p. (1978).

  • 65.

    Ferziger, J. H., Perić, M. & Street, R. L. Computational methods for fluid dynamics. Vol. 3 (Springer, 2002).

  • 66.

    Jasak, H. Error analysis and estimation for the finite volume method with applications to fluid flows. (1996).

  • 67.

    Issa, R. I. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 40–65. https://doi.org/10.1016/0021-9991(86)90099-9 (1986).

    ADS 
    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • 68.

    Oehy, C. D., De Cesare, G. & Schleiss, A. J. Effect of inclined jet screen on turbidity current. J. Hydraul. Res. 48, 81–90. https://doi.org/10.1080/00221680903566042 (2010).

    Article 

    Google Scholar
     

  • 69.

    Nourazar, S. & Safavi, M. Two-dimensional large-eddy simulation of density-current flow propagating up a slope. J. Hydraul. Eng. 143, 04017035. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001329 (2017).

    Article 

    Google Scholar
     

  • 70.

    Goodarzi, D., Abolfathi, S. & Borzooei, S. Modelling solute transport in water disinfection systems: Effects of temperature gradient on the hydraulic and disinfection efficiency of serpentine chlorine contact tanks. J. Water Process Eng. 37, 101411. https://doi.org/10.1016/j.jwpe.2020.101411 (2020).

    Article 

    Google Scholar
     

  • 71.

    Dong, S., Salauddin, M., Abolfathi, S., Tan, Z. H. & Pearson, J. M. The influence of geometrical shape changes on wave overtopping: a laboratory and SPH numerical study. In Coasts, Marine Structures and Breakwaters 2017 1217–1226. https://doi.org/10.1680/cmsb.63174.1217 (2018).

  • 72.

    Fitri, A., Hashim, R., Abolfathi, S. & Abdul Maulud, K. N. Dynamics of sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater on a cohesive coast. Water 11, 1721. https://doi.org/10.3390/w11081721 (2019).

    Article 

    Google Scholar
     

  • 73.

    Abolfathi, S., Shudi, D., Borzooei, S., Yeganeh-Bakhtiari, A. & Pearson, J. Application of smoothed particle hydrodynamics in evaluating the performance of coastal retrofit structures. Coast. Eng. Proc. 1https://doi.org/10.9753/icce.v36.papers.109 (2018).

  • 74.

    Abolfathi, S. & Pearson, J. Application of smoothed particle hydrodynamics (SPH) in nearshore mixing: a comparison to laboratory data. Coast. Eng. Proc. 1https://doi.org/10.9753/icce.v35.currents.16 (2017).

  • 75.

    Wood, I. & Simpson, J. Jumps in layered miscible fluids. J. Fluid Mech. 140, 329–342. https://doi.org/10.1017/S0022112084000628 (1984).

    ADS 
    Article 

    Google Scholar
     

  • 76.

    Kneller, B. & Buckee, C. The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications. Sedimentology 47, 62–94. https://doi.org/10.1046/j.1365-3091.2000.047s1062.x (2000).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *