CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Cuthbert, B. & Insel, T. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med.11, 1–8 (2013).


    Google Scholar
     

  • 2.

    Jeuring, H. W., Huisman, M., Comijs, H. C., Stek, M. L. & Beekman, A. T. F. The long-term outcome of subthreshold depression in later life. Psychol. Med.46, 2855–2865 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Karsten, J., Penninx, B. W., Verboom, C. E., Nolen, W. A. & Hartman, C. A. Course and risk factors of functional impairment in subthreshold depression and anxiety. Depress. Anxiety30, 386–394 (2013).

    PubMed 

    Google Scholar
     

  • 4.

    Laborde-Lahoz, P. et al. Subsyndromal depression among older adults in the USA: prevalence, comorbidity, and risk for new-onset psychiatric disorders in late life. Int. J. Geriatr. Psychiatry30, 677–685 (2015).

    PubMed 

    Google Scholar
     

  • 5.

    Meeks, T., Vahia, I., Lavretsky, H., Kulkarni, G. & Jeste, D. A tune in “A Minor” can “B Major”: a review of epidemiology, illness course, and public health implications of subthreshold depression in older adults. J. Affect. Disord.129, 126–142 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Cuijpers, P. et al. Differential mortality rates in major and subthreshold depression: meta-analysis of studies that measured both. Br. J. Psychiatry202, 22–27 (2013).

    PubMed 

    Google Scholar
     

  • 7.

    Zhou, H. et al. Smaller gray matter volume of hippocampus/parahippocampus in elderly people with subthreshold depression: a cross-sectional study. BMC Psychiatry16, 219 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Szymkowicz, S. M. et al. Depressive symptom severity is associated with increased cortical thickness in older adults. Int. J. Geriatr. Psychiatry31, 325–333 (2016).

    PubMed 

    Google Scholar
     

  • 9.

    Dotson, V. M., Davatzikos, C., Kraut, M. A. & Resnick, S. M. Depressive symptoms and brain volumes in older adults: a longitudinal magnetic resonance imaging study. J. Psychiatry Neurosci.34, 367–375 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Kumar, A. et al. Neuroanatonmical substrates of late-life minor depression. Arch. Neurol.54, 613–617 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Kumar, A., Jin, Z., Bilker, W., Udupa, J. & Gottlieb, G. Late-onset minor and major depression: early evidence for common neuroanatomical substrates detected by using MRI. Proc. Natl Acad. Sci. USA95, 7654–7658 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    O’Shea, D. M. et al. Depressive symptom dimensions and their association with hippocampal and entorhinal cortex volumes in community dwelling older adults. Front. Aging Neurosci.10, 40 (2018).

  • 13.

    Pizzagalli, D. A. et al. Functional but not structural subgenual prefrontal cortex abnormalities in melancholia. Mol. Psychiatry9, 393–405 (2004).


    Google Scholar
     

  • 14.

    Brailean, A. et al. Late-life depression symptom dimensions and cognitive functioning in the Longitudinal Aging Study Amsterdam (LASA). J. Affect. Disord.201, 171–178 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Vrieze, E. et al. Dimensions in major depressive disorder and their relevance for treatment outcome. J. Affect. Disord.155, 35–41 (2014).

    PubMed 

    Google Scholar
     

  • 16.

    McLaren, M. E. et al. Dimensions of depressive symptoms and cingulate volumes in older adults. Transl. Psychiatry6, e788 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Stoodley, C. J. & Schmahmann, J. D. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage44, 489–501 (2009).

    PubMed 

    Google Scholar
     

  • 18.

    Stoodley, C. J. & Schmahmann, J. D. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex46, 831–844 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Habas, C. et al. Distinct cerebellar contributions to intrinsic connectivity networks. J. Neurosci.29, 8586–8594 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Sang, L. et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. Neuroimage61, 1213–1225 (2012).

    PubMed 

    Google Scholar
     

  • 21.

    Leggio, M. & Olivito, G. Topography of the cerebellum in relation to social brain regions and emotions. Handb. Clin. Neurol.154, 71–84 (2018).

    PubMed 

    Google Scholar
     

  • 22.

    Habas, C. Research note: a resting-state, cerebello-amygdaloid intrinsically connected network. Cerebellum Ataxias5, 4 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Depping, M. S. et al. Abnormal cerebellar volume in acute and remitted major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry71, 97–102 (2016).

    PubMed 

    Google Scholar
     

  • 24.

    Shah, S. A. et al. Posterior fossa abnormalities in major depression: a controlled magnetic resonance imaging study. Acta Psychiatr. Scand.85, 474–479 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Escalona, P. R. et al. Reduction of cerebellar volume in major depression: a controlled MRI study. Depression1, 156–158 (1993).


    Google Scholar
     

  • 26.

    Pillay, S. S. et al. A quantitative magnetic resonance imaging study of cerebral and cerebellar gray matter volume in primary unipolar major depression: relationship to treatment response and clinical severity. Biol. Psychiatry42, 79–84 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Depping, M. S., Schmitgen, M. M., Kubera, K. M. & Wolf, R. C. Cerebellar contributions to major depression. Front. Psychiatry9, 1–5 (2018).


    Google Scholar
     

  • 28.

    Brandt, J., Spencer, M. & Folstein, M. The telephone interview for cognitive status. Neuropsychiatry Neuropsychol. Behav. Neurol.1, 111–117 (1988).


    Google Scholar
     

  • 29.

    First, M. B., Spitzer, R. L., Gibbon, M. & Williams, J. B. W. Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version (Biometrics Research, New York State Psychiatric Institute, New York, 2002).

  • 30.

    Radloff, L. S. The CES-D scale: a self-report depression scale for research in the general population. Appl. Psychol. Meas.1, 385–401 (1977).


    Google Scholar
     

  • 31.

    Gellis, Z. D. Assessment of a brief CES-D measure for depression in homebound medically ill older adults. J. Gerontol. Soc. Work53, 289–303 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Gomez, R. & McLaren, S. The center for epidemiological studies depression scale: measurement and structural invariance across ratings of older adult men and women. Personal. Individ. Differ.75, 130–134 (2015).


    Google Scholar
     

  • 33.

    Lewinsohn, P. M., Seeley, J. R., Roberts, R. E. & Allen, N. B. Center for Epidemiologic Studies Depression Scale (CES-D) as a screening instrument for depression among community-residing older adults. Psychol. Aging12, 277–287 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Carleton, R. N. et al. The center for epidemiologic studies depression scale: a review with a theoretical and empirical examination of item content and factor structure. PLoS One8, e58067 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Shafer, A. B. Meta-analysis of the factor structures of four depression questionnaires: Beck, CES-D, Hamilton, and Zung. J. Clin. Psychol.62, 123–146 (2006).

    PubMed 

    Google Scholar
     

  • 36.

    Diedrichsen, J. A spatially unbiased atlas template of the human cerebellum. Neuroimage33, 127–138 (2006).

    PubMed 

    Google Scholar
     

  • 37.

    Diedrichsen, J. et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage54, 1786–1794 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilistic MR atlas of the human cerebellum. Neuroimage46, 39–46 (2009).

    PubMed 

    Google Scholar
     

  • 39.

    Diedrichsen, J. & Zotow, E. Surface-based display of volume-averaged cerebellar imaging data. PLoS One10, e0133402 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    IBM Corp. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp. (2016).

  • 41.

    Cohen, J., Cohen, P., West, S. G. & Aiken, L. S. Applied multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd edn (Lawrence Erlbaum, Mahwah, NJ, 2003).

  • 42.

    Schraa-Tam, C. K. et al. fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior. Cerebellum11, 233–245 (2012).

    PubMed 

    Google Scholar
     

  • 43.

    Strick, P. L., Dum, R. P. & Fiez, J. A. Cerebellum and nonmotor function. Annu. Rev. Neurosci.32, 413–434 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Stoodley, C. J. & Schmahmann, J. D. Functional topography of the human cerebellum. Handb. Clin. Neurol.154, 59–70 (2018).

    PubMed 

    Google Scholar
     

  • 45.

    Wang, X., Ongur, D., Auerbach, R. P. & Yao, S. Cognitive vulnerability to major depression: view from the intrinsic network and cross-network interactions. Harv. Rev. Psychiatry24, 188–201 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci.27, 2349–2356 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Sliz, D. & Hayley, S. Major depressive disorder and alterations in insular cortical activity: a review of current functional magnetic imaging research. Front. Hum. Neurosci.6, 323 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Tadayonnejad, R. & Ajilore, O. Brain network dysfunction in late-life depression: a literature review. J. Geriatr. Psychiatry Neurol.27, 5–12 (2014).

    PubMed 

    Google Scholar
     

  • 49.

    Gong, L. et al. Disrupted reward circuits is associated with cognitive deficits and depression severity in major depressive disorder. J. Psychiatr. Res.84, 9–17 (2017).

    PubMed 

    Google Scholar
     

  • 50.

    Hoflich, A., Michenthaler, P., Kasper, S. & Lanzenberger, R. Circuit mechanisms of reward, anhedonia, and depression. Int. J. Neuropsychopharmacol.22, 105–118 (2019).

    PubMed 

    Google Scholar
     

  • 51.

    Belujon, P. & Grace, A. A. Dopamine system dysregulation in major depressive disorders. Int J. Neuropsychopharmacol.20, 1036–1046 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Ramasubbu, R. et al. Reduced intrinsic connectivity of amygdala in adults with major depressive disorder. Front. Psychiatry5, 17 (2014).

  • 53.

    McLaren, M. E. et al. Vertex-wise examination of depressive symptom dimensions and brain volumes in older adults. Psychiatry Res. Neuroimaging260, 70–75 (2017).

    PubMed 

    Google Scholar
     

  • 54.

    Ballmaier, M. et al. Mapping brain size and cortical gray matter changes in elderly depression. Biol. Psychiatry55, 382–389 (2004).

    PubMed 

    Google Scholar
     

  • 55.

    Bearden, C. E. et al. Altered hippocampal morphology in unmedicated patients with major depressive illness. ASN Neuro1, AN20090026 (2009).

  • 56.

    Phillips, J. L., Batten, L. A., Tremblay, P., Aldosary, F. & Blier, P. A prospective, longitudinal study of the effect of remission on cortical thickness and hippocampal volume in patients with treatment-resistant depression. Int. J. Neuropsychopharmacol.18, 1–9 (2015).

  • 57.

    Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci.69, S4–S9 (2014).

    PubMed 

    Google Scholar
     

  • 58.

    Alexopoulos, G. S. & Morimoto, S. S. The inflammation hypothesis in geriatric depression. Int. J. Geriatr. Psychiatry26, 1109–1118 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Dowlati, Y. et al. A meta-analysis of cytokines in major depression. Biol. Psychiatry67, 446–457 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Frodl, T. et al. Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biol. Psychiatry53, 338–344 (2003).

    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *