[ad_1]
World Health Organization. International Agency for Research on Cancer GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012 (WHO, Geneva, 2012).
Buciu, I. & Gacsadi, A. Directional features for automatic tumor classification of mammogram images. Biomed. Signal Process. Control. 6, 370–378 (2011).
Swiniarski, R. W., Luu, T., Swiniarska, A. K. & Tanto, H. Data mining and online recognition of mammographic images based on haar wavelets, principal component analysis, and rough sets methods. In Medical Imaging 2001: Image Perception and Performance, vol. 4324, 242–248 (International Society for Optics and Photonics, 2001).
Mencattini, A., Salmeri, M., Lojacono, R., Frigerio, M. & Caselli, F. Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE Trans. Instrum. Meas. 57, 1422–1430 (2008).
Cheng, E. et al. Mammographic image classification using histogram intersection. In 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 197–200 (IEEE, 2010).
Zaıane, O. R., Antonie, M.-L. & Coman, A. Mammography classification by an association rulebased classifier. MDM/KDD 62–69 (2002).
Zhao, Y., Chen, D., Xie, H., Zhang, S. & Gu, L. Mammographic image classification system via active learning. J. Med. Biol. Eng. 39, 569–582 (2019).
Voulodimos, A., Doulamis, N., Doulamis, A. & Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intelligence Neuroscience 20, 18. https://doi.org/10.1155/2018/7068349 (2018).
Yu, X., Yu, Z., Wu, L., Pang, W. & Lin, C. Data-driven two-layer visual dictionary structure learning. J. Electron. Imaging 28, 023006 (2019).
Che, D. et al. Tire tread pattern recognition based on non-linear activated aggregation residual neural network. J. Jiangxi Univ. Sci. Technol. 40, 80–85 (2019).
Yu, X. et al. Deep ensemble learning for human action recognition in still images. Complexity https://doi.org/10.1155/2020/9428612 (2020).
Yang, G. et al. Research on deep learning classification for nonlinear activation function. J. Jiangxi Univ. Sci. Technol. 39, 76–83 (2018).
Wang, J. et al. Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci. reports 6, 1–9 (2016).
Huynh, B. Q., Li, H. & Giger, M. L. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging 3, 034501 (2016).
Li, B., Ge, Y., Zhao, Y., Guan, E. & Yan, W. Benign and malignant mammographic image classification based on convolutional neural networks. In Proceedings of the 2018 10th International Conference on Machine Learning and Computing, 247–251 (2018).
Lévy, D. & Jain, A. Breast mass classification from mammograms using deep convolutional neural networks. arXiv preprint arXiv:1612.00542 (2016).
Cai, H. et al. Breast microcalcification diagnosis using deep convolutional neural network from digital mammograms. Comput. Math. Methods Med. 1, 4. https://doi.org/10.1155/2019/2717454 (2019).
Suckling J, P. The mammographic image analysis society digital mammogram database. Digit. Mammo 375–386 (1994).
Maaten, L. V. D. & Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Jenifer, S., Parasuraman, S. & Kadirvelu, A. Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast-limited adaptive histogram equalization algorithm. Appl. Soft Comput. 42, 167–177 (2016).
Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Lin, M., Chen, Q. & Yan, S. Network in network. arXiv preprint arXiv:1312.4400 (2013).
Szegedy, C. et al. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, 1–9 (2015).
Sivic, J. & Zisserman, A. Video google: A text retrieval approach to object matching in videos. In null, 1470 (IEEE, 2003).
Upadhyay, P. K. & Chandra, S. Salient bag of feature for skin lesion recognition. Int. J. Perform. Eng. 15, 1083–1093 (2019).
Huang, J.-B. & Yang, M.-H. Fast sparse representation with prototypes. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3618–3625 (IEEE, 2010).
Liu, Y., Chen, X., Ward, R. K. & Wang, Z. J. Image fusion with convolutional sparse representation. IEEE Signal Process. Lett. 23, 1882–1886 (2016).
Liu, C. & Wechsler, H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11, 467–476 (2002).
Khan, S., Hussain, M., Aboalsamh, H. & Bebis, G. A comparison of different gabor feature extraction approaches for mass classification in mammography. Multimed. Tools Appl. 76, 33–57 (2017).
Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4700–4708 (2017).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778 (2016).
Howard, A. G. et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).
[ad_2]
Source link