CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Solnica-Krezel, L. & Eaton, S. Embryo morphogenesis: getting down to cells and molecules. Development 130, 4229–4233 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Nelson, C. M. & Tien, J. Microstructured extracellular matrices in tissue engineering and development. Curr. Opin. Biotechnol. 17, 518–523 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Janmey, P. A. & Miller, R. T. Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 124, 9–18 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Keung, A. J., Kumar, S. & Schaffer, D. V. Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annu. Rev. Cell Dev. Biol. 26, 533–556 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Eyckmans, J., Boudou, T., Yu, X. & Chen, C. S. A Hitchhiker’s guide to mechanobiology. Dev. Cell 21, 35–47 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Nelson, C. M. & Gleghorn, J. P. Sculpting organs: mechanical regulation of tissue development. Annu. Rev. Biomed. Eng. 14, 129–154 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Mammoto, T., Mammoto, A. & Ingber, D. E. Mechanobiology and developmental control. Annu. Rev. Cell Dev. Biol. 29, 27–61 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Sinha, R., Verdonschot, N., Koopman, B. & Rouwkema, J. Tuning cell and tissue development by combining multiple mechanical signals. Tissue Eng. Part B Rev. 23, 494–504 (2017).

    PubMed 

    Google Scholar
     

  • 10.

    Heer, N. C. & Martin, A. C. Tension, contraction and tissue morphogenesis. Development 144, 4249–4260 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Maechler, F. A., Allier, C., Roux, A. & Tomba, C. Curvature-dependent constraints drive remodeling of epithelia. J. Cell Sci. 132, jcs222372 (2019).

  • 12.

    Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem. Cell Lineage Specif. Cell 126, 677–689 (2006).

    CAS 

    Google Scholar
     

  • 13.

    Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Acerbi, I. et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 7, 1120–1134 (2015).

    CAS 

    Google Scholar
     

  • 15.

    Gkretsi, V. & Stylianopoulos, T. Cell adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis. Front. Oncol. 8, 145 (2018).

  • 16.

    Najafi, M., Farhood, B. & Mortezaee, K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J. Cell. Biochem. 120, 2782–2790 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Li, Y., Fanous, M. J., Kilian, K. A. & Popescu, G. Quantitative phase imaging reveals matrix stiffness-dependent growth and migration of cancer cells. Sci. Rep. 9, 248 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Sridharan, R., Cavanagh, B., Cameron, A. R., Kelly, D. J. & O’Brien, F. J. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater. https://doi.org/10.1016/j.actbio.2019.02.048 (2019).

  • 19.

    Zahn, J. T. et al. Age-Dependent Changes in Microscale Stiffness and Mechanoresponses of Cells. Small 7, 1480–1487 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Kohn, J. C. et al. Mechanical heterogeneities in the subendothelial matrix develop with age and decrease with exercise. J. Biomech. 49, 1447–1453 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Proestaki, M., Ogren, A., Burkel, B. & Notbohm, J. Modulus of fibrous collagen at the length scale of a cell. Exp. Mech. https://doi.org/10.1007/s11340-018-00453-4 (2019).

  • 22.

    Wang, N. & Ingber, D. E. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem. Cell Biol. 73, 327–335 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Yamada, S., Wirtz, D. & Kuo, S. C. Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78, 1736–1747 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Ashkin, A. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl Acad. Sci. USA 94, 4853–4860 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Baker, B. M. et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 14, 1262–1268 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Buxboim, A., Rajagopal, K., Brown, A. E. X. & Discher, D. E. How deeply cells feel: methods for thin gels. J. Phys. Condens. Matter Inst. Phys. J. 22, 194116 (2010).

  • 27.

    Serwane, F. et al. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 14, 181–186 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Pelton, R. Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic. J. Colloid Interface Sci. 348, 673–674 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Ward, M. A. & Georgiou, T. K. Thermoresponsive. Polym. Biomed. Appl. Polym. 3, 1215–1242 (2011).

    CAS 

    Google Scholar
     

  • 30.

    Lee, W. et al. Dispersible hydrogel force sensors reveal patterns of solid mechanical stress in multicellular spheroid cultures. Nat. Commun. 10, 144 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Ma, X. et al. Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys. J. 104, 1410–1418 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Gancheva, T. & Virgilio, N. Enhancing and tuning the response of environmentally sensitive hydrogels with embedded and interconnected pore networks. Macromolecules 49, 5866–5876 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Bhan, C., Mandlewala, R., Gebregeorgis, A. & Raghavan, D. Adsorption–desorption study of BSA conjugated silver nanoparticles (Ag/BSA NPs) on collagen immobilized substrates. Langmuir 28, 17043–17052 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Ellmerer, M. et al. Measurement of interstitial albumin in human skeletal muscle and adipose tissue by open-flow microperfusion. Am. J. Physiol. Endocrinol. Metab. 278, E352–E356 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Tevis, K. M., Colson, Y. L. & Grinstaff, M. W. Embedded spheroids as models of the cancer microenvironment. Adv. Biosyst. 1, 1700083 (2017).

  • 36.

    Zhao, L., Mok, S. & Moraes, C. Micropocket hydrogel devices for all-in-one formation, assembly, and analysis of aggregate-based tissues. Biofabrication https://doi.org/10.1088/1758-5090/ab30b4 (2019)

  • 37.

    Atefi, E., Lemmo, S., Fyffe, D., Luker, G. D. & Tavana, H. High throughput, polymeric aqueous two-phase printing of tumor spheroids. Adv. Funct. Mater. 24, 6509–6515 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Dolega, M. E. et al. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. Nat. Commun. 8, 14056 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Montel, F. et al. Stress clamp experiments on multicellular tumor spheroids. Phys. Rev. Lett. 107, 188102 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • 40.

    Taloni, A., Ben Amar, M., Zapperi, S. & La Porta, C. A. M. The role of pressure in cancer growth. Eur. Phys. J. 130, 224 (2015).


    Google Scholar
     

  • 41.

    Cisneros Castillo, L. R., Oancea, A.-D., Stüllein, C. & Régnier-Vigouroux, A. Evaluation of consistency in spheroid invasion assays. Sci. Rep. 6, 28375 (2016).

  • 42.

    Swaminathan, V. et al. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71, 5075–5080 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Fenner, J. et al. Macroscopic stiffness of breast tumors predicts metastasis. Sci. Rep. 4, 5512 (2014).

  • 44.

    Nia, H. T. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 1, 0004 (2017).

    CAS 

    Google Scholar
     

  • 45.

    Boyd, N. F. et al. Evidence that breast tissue stiffness is associated with risk of breast cancer. PLoS ONE 9, e100937 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Levental, K. R. et al. Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell 139, 891–906 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Lang, N. R. et al. Biphasic response of cell invasion to matrix stiffness in three-dimensional biopolymer networks. Acta Biomater. 13, 61–67 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Wang, W. Y., Davidson, C. D., Lin, D. & Baker, B. M. Actomyosin contractility-dependent matrix stretch and recoil induces rapid cell migration. Nat. Commun. 10, 1186 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Plodinec, M. et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7, 757–765 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Liu, H. et al. In Situ Mechanical Characterization of the Cell Nucleus by Atomic Force Microscopy. ACS Nano 8, 3821–3828 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Kasza, K. E. et al. The cell as a material. Curr. Opin. Cell Biol. 19, 101–107 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Chang, J. M. et al. Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer. Eur. Radiol. 23, 2450–2458 (2013).

    PubMed 

    Google Scholar
     

  • 53.

    Pulaski, B. A. & Ostrand‐Rosenberg, S. Mouse 4T1 breast tumor model. Curr. Protoc. Immunol. 39, 20.2.1–20.2.16 (2000).


    Google Scholar
     

  • 54.

    Voutouri, C. & Stylianopoulos, T. Accumulation of mechanical forces in tumors is related to hyaluronan content and tissue stiffness. PLoS ONE 13, e0193801 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl Acad. Sci. USA 109, 15101–15108 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Agus, D. B. et al. A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci. Rep. 3, 1449 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Han, Y. L. et al. Cell swelling, softening and invasion in a three-dimensional breast cancer model. Nat. Phys. https://doi.org/10.1038/s41567-019-0680-8 (2019).

  • 58.

    Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Lopez, J. I., Kang, I., You, W.-K., McDonald, D. M. & Weaver, V. M. In situ force mapping of mammary gland transformation. Integr. Biol. 3, 910–921 (2011).

    CAS 

    Google Scholar
     

  • 60.

    Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Pei, Y. et al. The effect of pH on the LCST of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid). J. Biomater. Sci. Polym. Ed. 15, 585–594 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Zhang, X., Lin, Y. & Gillies, R. J. Tumor pH and its measurement. J. Nucl. Med. 51, 1167–1170 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Sunyer, R., Trepat, X., Fredberg, J. J., Farré, R. & Navajas, D. The temperature dependence of cell mechanics measured by atomic force microscopy. Phys. Biol. 6, 025009 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Demetri-Lewis, A., Slanetz, P. J. & Eisenberg, R. L. Breast calcifications: the focal group. Am. J. Roentgenol. 198, W325–W343 (2012).


    Google Scholar
     

  • 65.

    Ham, S. L., Atefi, E., Fyffe, D. & Tavana, H. Robotic production of cancer cell spheroids with an aqueous two-phase system for drug testing. J. Vis. Exp. e52754 (2015).

  • 66.

    Dougherty, R. Extensions of DAMAS and Benefits and Limitations of Deconvolution in Beamforming. In 11th AIAA/CEAS Aeroacoustics Conference https://doi.org/10.2514/6.2005-2961 (American Institute of Aeronautics and Astronautics, 2005).

  • 67.

    Takigawa, T., Morino, Y., Urayama, K. & Masuda, T. Poisson’s ratio of polyacrylamide (PAAm) gels. Polym. Gels Netw. 4, 1–5 (1996).

    CAS 

    Google Scholar
     

  • 68.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Maas, S. A., Ellis, B. J., Ateshian, G. A. & Weiss, J. A. FEBio: finite elements for biomechanics. J. Biomech. Eng. 134, 11005–11 (2012).

    PubMed Central 

    Google Scholar
     

  • 70.

    Maas, S. A., Erdemir, A., Halloran, J. P. & Weiss, J. A. A general framework for application of prestrain to computational models of biological materials. J. Mech. Behav. Biomed. Mater. 61, 499–510 (2016).

    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *