CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    USDA NASS. 2017 Census of Agriculture (2017).

  • 2.

    Fausey, N. R. Drainage management for humid regions. Int. Agric. Eng. J.14, 209–214 (2005).


    Google Scholar
     

  • 3.

    Du, B., Arnold, J. G., Saleh, A. & Jaynes, D. B. Development and application of SWAT to landscapes with tiles and potholes. Trans. ASAE48, 1121–1133 (2005).

    Article 

    Google Scholar
     

  • 4.

    Blann, K. L., Anderson, J. L., Sands, G. R. & Vondracek, B. Effects of agricultural drainage on aquatic ecosystems: a review. Crit. Rev. Environ. Sci. Technol.39, 909–1001 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    King, K. W., Fausey, N. R. & Williams, M. R. Effect of subsurface drainage on streamflow in an agricultural headwater watershed. J. Hydro.519, 438–445 (2014).

    Article 

    Google Scholar
     

  • 6.

    Darzi-Naftchali, A., Mirlatifi, S. M., Shahnazari, A., Ejlali, F. & Mahdian, M. H. Effect of subsurface drainage on water balance and water table in poorly drained paddy fields. Agric. Water Manage.130, 61–68 (2013).

    Article 

    Google Scholar
     

  • 7.

    Robinson, M. & Rycroft, D. W. The impact of drainage on streamflow. Agric. Drain.38, 767–800 (1999).


    Google Scholar
     

  • 8.

    Skaggs, R. W., Breve, M. A. & Gilliam, J. W. Hydrologic and water quality impacts of agricultural drainage. Crit. Rev. Environ. Sci. Technol.24, 1–32 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Henine, H. et al. Effect of pipe pressurization on the discharge of a tile drainage system. Vadose Zone J.9, 36–42 (2010).

    Article 

    Google Scholar
     

  • 10.

    Schilling, K. E., Jindal, P., Basu, N. B. & Helmers, M. J. Impact of artificial subsurface drainage on groundwater travel times and baseflow discharge in an agricultural watershed, Iowa (USA). Hydrol. Processes26, 3092–3100 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Schilling, K. E. & Libra, R. D. Increased baseflow in Iowa over the second half of the 20th Century. J. Am. Water Resour. Assoc.39, 851–860 (2003).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Schilling, K. E. & Helmers, M. Effects of subsurface drainage tiles on streamflow in Iowa agricultural watersheds: Exploratory hydrograph analysis. Hydrol. Processes22, 4497–4506 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Haitjema, H. M. On the residence time distribution in idealized groundwatersheds. J. Hydrol.172, 127–146 (1995).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Magner, J. A., Payne, G. A. & Steffen, L. J. Drainage effects on stream nitrate-N and hydrology in south-central Minnesota (USA). Environ. Model. Assess.91, 183–198 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Eastman, M., Gollamudi, A., Stämpfli, N., Madramootoo, C. A. & Sarangi, A. Comparative evaluation of phosphorus losses from subsurface and naturally drained agricultural fields in the Pike River watershed of Quebec, Canada. Agric. Water Manage.97, 596–604 (2010).

    Article 

    Google Scholar
     

  • 16.

    Schottler, S. P. et al. Twentieth century agricultural drainage creates more erosive rivers. Hydrol. Processes28, 1951–1961 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 17.

    Rozemeijer, J. C. et al. Integrated modeling of groundwater–surface water interactions in a tile‐drained agricultural field: The importance of directly measured flow route contributions. Water Resour. Res. 46 (2010).

  • 18.

    Van den Eertwegh, G. A. P. H., Nieber, J. L., De Louw, P. G. B., Van Hardeveld, H. A. & Bakkum, R. Impacts of drainage activities for clay soils on hydrology and solute loads to surface water. Irrig. Drain.55, 235–245 (2006).

    Article 

    Google Scholar
     

  • 19.

    Khand, K., Kjaersgaard, J., Hay, C. & Jia, X. Estimating impacts of agricultural subsurface drainage on evapotranspiration using the Landsat imagery-based METRIC model. Hydrology4, 49 (2017).

    Article 

    Google Scholar
     

  • 20.

    Yang, Y. et al. Impact of tile drainage on evapotranspiration in South Dakota, USA, based on high spatiotemporal resolution evapotranspiration time series from a multisatellite data fusion system. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.10, 2550–2564 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    Sugg, Z. Assessing US farm drainage: Can GIS lead to better estimates of subsurface drainage extent. World Resour. Institute, Washington, DC20002 (2007).

  • 22.

    Tomer, M. D., Meek, D. W., Jaynes, D. B. & Hatfield, J. L. Evaluation of nitrate nitrogen fluxes from a tile-drained watershed in central Iowa. J. Environ. Qual.32, 642–653 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Jaynes, D. B. & James, D. E. The extent of farm drainage in the United States. US Dep. Agric. (2007).

  • 24.

    Sui, Y. Potential impact of controlled drainage in Indiana watersheds (Doctoral dissertation, Purdue University). Preprint at https://docs.lib.purdue.edu/dissertations/AAI3307491/ (2007).

  • 25.

    Naz, B. S., Ale, S. & Bowling, L. C. Detecting subsurface drainage systems and estimating drain spacing in intensively managed agricultural landscapes. Agric. Water Manage.96, 627–637 (2009).

    Article 

    Google Scholar
     

  • 26.

    Brown, D. C. Applying a Model to Predict the Location of Land Drained by Subsurface Drainage Systems in Central Minnesota. Pap. Resour. Anal. Saint Mary’s Univ. Minnesota Univ. Serv. (2013).

  • 27.

    Nakagaki, N., Wieczorek, M. E. & Qi, S. L. Estimates of Subsurface Tile Drainage Extent for the Conterminous United States, early 1990s. US Geological Survey, https://doi.org/10.5066/F7RB72QS (2016).

  • 28.

    Nakagaki, N. & Wieczorek, M.E. Estimates of subsurface tile drainage extent for 12 Midwest states. US Geological Survey, https://doi.org/10.5066/F7W37TDP (2016).

  • 29.

    Cho, E., Jacobs, J. M., Jia, X. & Kraatz, S. Identifying Subsurface Drainage using Satellite Big Data and Machine Learning via Google Earth Engine. Water Resour. Res.55, 8028–8045 (2019).

    Article 

    Google Scholar
     

  • 30.

    Northcott, W. J., Verma, A. K. & Cooke, R. A. Mapping subsurface drainage systems using remote sensing and GIS. ASAE Ann. Int. Meeting. 2625–2634 (2000).

  • 31.

    Varner, B. L., Gress, T., Copenhaver, K. & White, S. The effectiveness and economic feasibility of image based agricultural tile maps. Final Rep. NASA ESAD. (2002).

  • 32.

    Tetzlaff, B., Kuhr, P. & Wendland, F. A new method for creating maps of artificially drained areas in large river basins based on aerial photographs and geodata. Irrig. Drain.58, 569–585 (2009).

    Article 

    Google Scholar
     

  • 33.

    NASS, USDA. USDA/NASS QuickStats Ad-hoc query tool. US Dep. Agric. (2014).

  • 34.

    ESRI. ArcMap 10.7. Environ. Syst. Res. Institute, Redlands, California, USA (2019).

  • 35.

    Jin, S., Homer, C., Dewitz, J., Danielson, P. & Howard, D. National Land Cover Database (NLCD) 2016 Science Research Products. AGUFM2019, B11I-2301 (2019).

  • 36.

    USGS. USGS EROS Archive – Digital Elevation – Shuttle Radar Topography Mission (SRTM) Void Filled 1 Arc-Second Global. Earth Resour. Obs. Sci. Cent. 1–7, https://doi.org/10.5066/F7F76B1X (2018).

  • 37.

    Valayamkunnath, P., Barlage, M., Chen, F., Gochis, D. & Franz, K. AgTile-US. figshare
    https://doi.org/10.6084/m9.figshare.11825742 (2020).

  • 38.

    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ.148, 42–57 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Boryan, C., Yang, Z., Mueller, R. & Craig, M. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int.26, 341–358, https://doi.org/10.1080/10106049.2011.562309 (2011).

    Article 

    Google Scholar
     

  • 40.

    Gesch, D., Oimoen, M., Zhang, Z., Meyer, D. & Danielson, J. Validation of the ASTER global digital elevation model version 2 over the conterminous United States. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.39, B4 (2012).


    Google Scholar
     

  • 41.

    Gesch, D. B., Oimoen, M. J. & Evans, G. A. Accuracy assessment of the US Geological Survey National Elevation Dataset, and comparison with other large-area elevation datasets: SRTM and ASTER. Report No. 2014-1008 (US Geological Survey, 2014).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *