• 1.

    State of Europe’s Forests 2015 Report (Forest Europe, 2015).

  • 2.

    Fuchs, R., Herold, M., Verburg, P. H., Clevers, J. G. P. W. & Eberle, J. Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Global Change Biol. 21, 299–313 (2015).


    Google Scholar
     

  • 3.

    Ciais, P. et al. Carbon accumulation in European forests. Nat. Geosci. 1, 425–429 (2008).

    CAS 

    Google Scholar
     

  • 4.

    Senf, C. et al. Canopy mortality has doubled across Europe’s temperate forests in the last three decades. Nat. Commun. 9, 4978 (2018).


    Google Scholar
     

  • 5.

    Seidl, R., Schelhaas, M.-J. & Lexer, M. J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biol. 17, 2842–2852 (2011).


    Google Scholar
     

  • 6.

    Senf, C. & Seidl, R. Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Global Change Biol. 24, 1201–1211 (2018).


    Google Scholar
     

  • 7.

    Senf, C., Sebald, J. & Seidl, R. Increases in canopy mortality and their impact on the demographic structure of Europe’s forests. Preprint at bioRxiv https://doi.org/10.1101/2020.03.30.015818 (2020).

  • 8.

    Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013).

    CAS 

    Google Scholar
     

  • 9.

    Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

    CAS 

    Google Scholar
     

  • 10.

    Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91, 760–781 (2016).


    Google Scholar
     

  • 11.

    Lindner, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol. Manage. 259, 698–709 (2010).


    Google Scholar
     

  • 12.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manage. 259, 660–684 (2010).


    Google Scholar
     

  • 13.

    Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818 (2015).

    CAS 

    Google Scholar
     

  • 14.

    Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).


    Google Scholar
     

  • 15.

    Seidl, R. The shape of ecosystem management to come: anticipating risks and fostering resilience. BioScience 64, 1159–1169 (2014).


    Google Scholar
     

  • 16.

    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).


    Google Scholar
     

  • 17.

    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).


    Google Scholar
     

  • 18.

    Bebi, P. et al. Changes of forest cover and disturbance regimes in the mountain forests of the Alps. Forest Ecol. Manage. 388, 43–56 (2017).

    CAS 

    Google Scholar
     

  • 19.

    Kulakowski, D., Bebi, P. & Rixen, C. The interacting effects of land use change, climate change and suppression of natural disturbances on landscape forest structure in the Swiss Alps. Oikos 120, 216–225 (2011).


    Google Scholar
     

  • 20.

    Munteanu, C. et al. Legacies of 19th century land use shape contemporary forest cover. Glob. Environ. Change 34, 83–94 (2015).


    Google Scholar
     

  • 21.

    Sommerfeld, A. et al. Patterns and drivers of recent disturbances across the temeprate forest biome. Nat. Commun. 9, 4355 (2018).

  • 22.

    Lindenmayer, D. B. et al. Salvage harvesting policies after natural disturbance. Science 303, 1303 (2004).

    CAS 

    Google Scholar
     

  • 23.

    Senf, C., Müller, J. & Seidl, R. Post-disturbance recovery of forest cover and tree height differ with management in Central Europe. Landsc. Ecol. 34, 2837–2850 (2019).

  • 24.

    Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).


    Google Scholar
     

  • 25.

    Janda, P. et al. The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. Forest Ecol. Manage. 388, 67–78 (2017).


    Google Scholar
     

  • 26.

    Vacchiano, G., Garbarino, M., Lingua, E. & Motta, R. Forest dynamics and disturbance regimes in the Italian Apennines. Forest Ecol. Manage. 388, 57–66 (2017).


    Google Scholar
     

  • 27.

    Nagel, T. A. et al. The natural disturbance regime in forests of the Dinaric Mountains: a synthesis of evidence. Forest Ecol. Manage. 388, 29–42 (2017).


    Google Scholar
     

  • 28.

    Stephens, S. L. et al. Temperate and boreal forest mega-fires: characteristics and challenges. Front. Ecol. Environ. 12, 115–122 (2014).


    Google Scholar
     

  • 29.

    Brang, P. et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87, 492–503 (2014).


    Google Scholar
     

  • 30.

    Kulha, N. A. et al. At what scales and why does forest structure vary in naturally dynamic boreal forests? An analysis of forest landscapes on two continents. Ecosystems 22, 709–724 (2019).


    Google Scholar
     

  • 31.

    Duncker, P. S. et al. Classification of forest management approaches. Ecol. Soc. 17, 51 (2012).

  • 32.

    Levers, C. et al. Drivers of forest harvesting intensity patterns in Europe. Forest Ecol. Manage. 315, 160–172 (2014).


    Google Scholar
     

  • 33.

    Boncina, A. History, current status and future prospects of uneven-aged forest management in the Dinaric region: an overview. Forestry 84, 467–478 (2011).


    Google Scholar
     

  • 34.

    Kulakowski, D. et al. A walk on the wild side: disturbance dynamics and the conservation and management of European mountain forest ecosystems. Forest Ecol. Manage. 388, 120–131 (2017).


    Google Scholar
     

  • 35.

    Kuuluvainen, T., Tahvonen, O. & Aakala, T. Even-aged and uneven-aged forest management in boreal Fennoscandia: a review. AMBIO 41, 720–737 (2012).


    Google Scholar
     

  • 36.

    Kuemmerle, T., Hostert, P., Radeloff, V. C., Perzanowski, K. & Kruhlov, I. Post-socialist forest disturbance in the Carpathian border region of Poland, Slovakia, and Ukraine. Ecol. Appl. 17, 1279–1295 (2007).


    Google Scholar
     

  • 37.

    Forzieri, G. et al. A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data 12, 257–276 (2020).


    Google Scholar
     

  • 38.

    San-Miguel-Ayanz, J., Moreno, J. M. & Camia, A. Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. Forest Ecol. Manage. 294, 11–22 (2013).


    Google Scholar
     

  • 39.

    Mori, A. S. & Kitagawa, R. Retention forestry as a major paradigm for safeguarding forest biodiversity in productive landscapes: a global meta-analysis. Biol. Conserv. 175, 65–73 (2014).


    Google Scholar
     

  • 40.

    Meigs, G. W. et al. More ways than one: mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways. Forest Ecol. Manage. 406, 410–426 (2017).


    Google Scholar
     

  • 41.

    Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C. & Hobart, G. W. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 170, 121–132 (2015).


    Google Scholar
     

  • 42.

    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).


    Google Scholar
     

  • 43.

    Potapov, P. V. et al. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens. Environ. 159, 28–43 (2015).


    Google Scholar
     

  • 44.

    Senf, C., Pflugmacher, D., Hostert, P. & Seidl, R. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS J. Photogramm. Remote Sens. 130, 453–463 (2017).


    Google Scholar
     

  • 45.

    Kennedy, R. E. et al. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 122, 117–133 (2012).


    Google Scholar
     

  • 46.

    Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C. & Hobart, G. W. An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sens. Environ. 158, 220–234 (2015).


    Google Scholar
     

  • 47.

    Cohen, W. B., Yang, Z. & Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—tools for calibration and validation. Remote Sens. Environ. 114, 2911–2924 (2010).


    Google Scholar
     

  • 48.

    Pflugmacher, D., Rabe, A., Peters, M. & Hostert, P. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sens. Environ. 221, 583–595 (2019).


    Google Scholar
     

  • 49.

    Kennedy, R. E., Yang, Z. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910 (2010).


    Google Scholar
     

  • 50.

    Kennedy, R. et al. Implementation of the LandTrendr algorithm on Google Earth Engine. Remote Sens. 10, 691 (2018).

  • 51.

    Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 185, 57–70 (2016).


    Google Scholar
     

  • 52.

    Flood, N. Seasonal composite landsat TM/ETM+ images using the medoid (a multi-dimensional median). Remote Sens. 5, 6481–6500 (2013).


    Google Scholar
     

  • 53.

    Pflugmacher, D., Cohen, W. B. & E. Kennedy, R. Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens. Environ. 122, 146–165 (2012).


    Google Scholar
     

  • 54.

    Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E. & Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 205, 131–140 (2018).


    Google Scholar
     

  • 55.

    Senf, C., Pflugmacher, D., Wulder, M. A. & Hostert, P. Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote Sens. Environ. 170, 166–177 (2015).


    Google Scholar
     

  • 56.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).


    Google Scholar
     

  • 57.

    Cohen, W. et al. How similar are forest disturbance maps derived from different landsat time series algorithms? Forests 8, 98 (2017).


    Google Scholar
     

  • 58.

    Birch, C. P. D., Oom, S. P. & Beecham, J. A. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 206, 347–359 (2007).


    Google Scholar
     

  • 59.

    Bright, B. C., Hudak, A. T., Kennedy, R. E. & Meddens, A. J. H. Landsat time series and Lidar as predictors of live and dead basal area across five bark beetle-affected forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 3440–3452 (2014).


    Google Scholar
     

  • 60.

    Wilcox, R. R. Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy (Springer, 2010).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *