CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Stonik, V. Marine natural products: A way to new drugs. Acta Nat.2, 15–25 (2009).


    Google Scholar
     

  • 2.

    Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A. & Prinsep, M. R. Marine natural products. Nat. Prod. Rep.36(1), 122–173 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Berlinck, R. G. S., Bertonha, A. F., Takaki, M. & Rodriguez, J. P. G. The chemistry and biology of guanidine natural products. Nat. Prod. Rep.34(11), 1264–1301 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Shi, Y., Moazami, Y. & Pierce, J. G. Structure, synthesis and biological properties of the pentacyclic guanidinium alkaloids. Biorg. Med. Chem.25(11), 2817–2824 (2017).

    CAS 

    Google Scholar
     

  • 5.

    Berlinck, R. G. S. et al. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep.27(12), 1871–1907 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Abbas, S. et al. Advancement into the arctic region for bioactive sponge secondary metabolites. Mar. Drugs9(11), 2423–2437 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Berlinck, R. G. S., Trindade-Silva, A. E. & Santos, M. F. C. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep.29(12), 1382–1406 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Dyshlovoy, S. et al. Marine alkaloid Monanchocidin A induces lysosome membrane permeabilization and overcomes cisplatin resistance in germ cell tumor cells. Oncol. Res. Treat.37, 4–5 (2014).


    Google Scholar
     

  • 9.

    Dyshlovoy, S. A. et al. Guanidine alkaloids from the marine sponge Monanchora pulchra show cytotoxic properties and prevent EGF-induced neoplastic transformation in vitro. Mar. Drugs14(7), 133 (2016).

    PubMed Central 

    Google Scholar
     

  • 10.

    Kashman, Y. et al. Ptilomycalin A: A novel polycyclic guanidine alkaloid of marine origin. J. Am. Chem. Soc.111(24), 8925–8926 (1989).

    CAS 

    Google Scholar
     

  • 11.

    Tabakmakher, K. M. et al. Monanchomycalin C, a new pentacyclic guanidine alkaloid from the Far-Eastern marine sponge Monanchora pulchra. Nat. Prod. Commun.8(10), 1399–1402 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Guzii, A. G. et al. Monanchocidin: A new apoptosis-inducing polycyclic guanidine alkaloid from the marine sponge Monanchora pulchra. Org. Lett.12(19), 4292–4295 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Dyshlovoy, S. A. et al. Marine alkaloid Monanchocidin A overcomes drug resistance by induction of autophagy and lysosomal membrane permeabilization. Oncotarget6(19), 17328–17341 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Dyshlovoy, S. A. et al. Anti-migratory activity of marine alkaloid monanchocidin A: Proteomics-based discovery and confirmation. Proteomics16(10), 1590–1603 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Aron, Z. D., Pietraszkiewicz, H., Overman, L. E., Valeriote, F. & Cuevas, C. Synthesis and anticancer activity of side chain analogs of the crambescidin alkaloids. Biorg. Med. Chem. Lett.14(13), 3445–3449 (2004).

    CAS 

    Google Scholar
     

  • 16.

    Roel, M. et al. Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model. Oncotarget7(50), 83071–83087 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Aoki, S., Kong, D., Matsui, K. & Kobayashi, M. Erythroid differentiation in K562 chronic myelogenous cells induced by crambescidin 800, a pentacyclic guanidine alkaloid. Anticancer Res.24(4), 2325–2330 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Berlinck, R. G. et al. Polycyclic guanidine alkaloids from the marine sponge Crambe crambe and Ca++ channel blocker activity of crambescidin 816. J. Nat. Prod.56(7), 1007–1015 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Martin, V. et al. Differential effects of crambescins and crambescidin 816 in voltage-gated sodium, potassium and calcium channels in neurons. Chem. Res. Toxicol.26(1), 169–178 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Rubiolo, J. A. et al. Mechanism of cytotoxic action of crambescidin-816 on human liver-derived tumour cells. Br. J. Pharmacol.171(7), 1655–1667 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Shubina, L. K. et al. Monanchoxymycalin C with anticancer properties, new analogue of crambescidin 800 from the marine sponge Monanchora pulchra. Nat. Prod. Res.33(10), 1415–1422 (2017).

    PubMed 

    Google Scholar
     

  • 22.

    Dyshlovoy, S. et al. Frondoside A induces AIF-associated caspase-independent apoptosis in Burkitt’s lymphoma cells. Leuk. Lymphoma
    https://doi.org/10.1080/10428194.10422017.11317091 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Dyshlovoy, S. A. et al. The marine triterpene glycoside frondoside A induces p53-independent apoptosis and inhibits autophagy in urothelial carcinoma cells. BMC Cancer17(1), 93 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Dyshlovoy, S. A. et al. The marine triterpene glycoside frondoside A exhibits activity in vitro and in vivo in prostate cancer. Int. J. Cancer138, 2450–2465 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Dyshlovoy, A. S. et al. Successful targeting of the warburg effect in prostate cancer by glucose-conjugated 1,4-naphthoquinones. Cancers11(11), 1690 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 26.

    Arni, S. et al. Ex vivo multiplex profiling of protein tyrosine kinase activities in early stages of human lung adenocarcinoma. Oncotarget8(40), 68599–68613 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Chou, T.-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev.58(3), 621–681 (2006).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Chou, T.-C. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res.70(2), 440–446 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Dyshlovoy, S. A. et al. Inspired by sea urchins: Warburg effect mediated selectivity of novel synthetic non-glycoside 1,4-naphthoquinone-6S-glucose conjugates in prostate cancer. Mar. Drugs18(5), 251 (2020).

    PubMed Central 

    Google Scholar
     

  • 30.

    Sampson, N., Neuwirt, H., Puhr, M., Klocker, H. & Eder, I. E. In vitro model systems to study androgen receptor signaling in prostate cancer. Endocr. Relat. Cancer20(2), R49-64 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Nelson, P. S. Targeting the androgen receptor in prostate cancer: A resilient foe. N. Engl. J. Med.371(11), 1067–1069 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Polverino, A. J. & Patterson, S. D. Selective activation of caspases during apoptotic induction in HL-60 cells. Effects of a tetrapeptide inhibitor. J. Biol. Chem.272(11), 7013–7021 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    King, K. L., Jewell, C. M., Bortner, C. D. & Cidlowski, J. A. 28S ribosome degradation in lymphoid cell apoptosis: Evidence for caspase and Bcl-2-dependent and -independent pathways. Cell Death Differ.7(10), 994–1001 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Dhillon, A. S., Hagan, S., Rath, O. & Kolch, W. MAP kinase signalling pathways in cancer. Oncogene26(22), 3279–3290 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Struve, N. et al. EGFRvIII upregulates DNA mismatch repair resulting in increased temozolomide sensitivity of MGMT promoter methylated glioblastoma. Oncogene39(15), 3041–3055 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Rodríguez-Berriguete, G. et al. MAP kinases and prostate cancer. J. Signal Transduct.2012, 169170–169170 (2012).

    PubMed 

    Google Scholar
     

  • 37.

    Kamm, K. E. & Stull, J. T. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu. Rev. Pharmacol. Toxicol.25, 593–620 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Tohtong, R., Phattarasakul, K., Jiraviriyakul, A. & Sutthiphongchai, T. Dependence of metastatic cancer cell invasion on MLCK-catalyzed phosphorylation of myosin regulatory light chain. Prostate Cancer Prostat. Dis.6(3), 212–216 (2003).

    CAS 

    Google Scholar
     

  • 39.

    Xiong, Y. et al. Myosin light chain kinase: A potential target for treatment of inflammatory diseases. Front. Pharmacol.8, 292 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Hayashi, S. et al. Identification and characterization of RPK118, a novel sphingosine kinase-1-binding protein. J. Biol. Chem.277(36), 33319–33324 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Liu, L. et al. RPK118, a PX domain-containing protein, interacts with peroxiredoxin-3 through pseudo-kinase domains. Mol. Cells19(1), 39–45 (2005).

    PubMed 

    Google Scholar
     

  • 42.

    Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature446(7132), 153–158 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Schiebel, K. et al. Abnormal XY interchange between a novel isolated protein kinase gene, PRKY, and its homologue, PRKX, accounts for one third of all (Y+)XX males and (Y−)XY females. Hum. Mol. Genet.6(11), 1985–1989 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Liu, J. & Lin, A. Role of JNK activation in apoptosis: A double-edged sword. Cell Res.15(1), 36–42 (2005).

    ADS 
    PubMed 

    Google Scholar
     

  • 45.

    Zhang, S. et al. c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly(ADP-ribose) polymerase-1 activation. Cell Death Differ.14(5), 1001–1010 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Li, X. et al. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J. Hematol. Oncol.6, 19 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Lord, C. J. & Ashworth, A. PARP inhibitors: Synthetic lethality in the clinic. Science355(6330), 1152–1158 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Samatar, A. A. & Poulikakos, P. I. Targeting RAS-ERK signalling in cancer: Promises and challenges. Nat. Rev. Drug Discov.13(12), 928–942 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Gross, S., Rahal, R., Stransky, N., Lengauer, C. & Hoeflich, K. P. Targeting cancer with kinase inhibitors. J. Clin. Investig.125(5), 1780–1789 (2015).

    PubMed 

    Google Scholar
     

  • 50.

    Bode, A. M. & Dong, Z. The functional contrariety of JNK. Mol. Carcinog.46(8), 591–598 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Xu, R. & Hu, J. The role of JNK in prostate cancer progression and therapeutic strategies. Biomed. Pharmacother.121, 109679 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Yang, Y.-M. et al. C-Jun NH2-terminal kinase mediates proliferation and tumor growth of human prostate carcinoma. Clin. Cancer Res.9(1), 391 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Hu, J., Wang, G. & Sun, T. Dissecting the roles of the androgen receptor in prostate cancer from molecular perspectives. Tumour Biol.39(5), 1010428317692259 (2017).

    PubMed 

    Google Scholar
     

  • 54.

    Liu, P.-Y. et al. Regulation of androgen receptor expression by Z-isochaihulactone mediated by the JNK signaling pathway and might be related to cytotoxicity in prostate cancer. Prostate73(5), 531–541 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Tang, F. et al. Androgen via p21 inhibits tumor necrosis factor alpha-induced JNK activation and apoptosis. J. Biol. Chem.284(47), 32353–32358 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Shimada, K., Nakamura, M., Ishida, E., Kishi, M. & Konishi, N. Requirement of c-jun for testosterone-induced sensitization to N-(4-hydroxyphenyl)retinamide-induced apoptosis. Mol. Carcinog.36(3), 115–122 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Lorenzo, P. I. & Saatcioglu, F. Inhibition of apoptosis in prostate cancer cells by androgens is mediated through downregulation of c-jun N-terminal kinase activation. Neoplasia10(5), 418–428 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Hübner, A. et al. JNK and PTEN cooperatively control the development of invasive adenocarcinoma of the prostate. Proc. Natl. Acad. Sci.109(30), 12046 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • 59.

    Zhang, P. et al. Expressions of JNK and p-JNK in advanced prostate cancer and their clinical implications. Zhonghua Nan Ke Xue23(4), 309–314 (2017).

    PubMed 

    Google Scholar
     

  • 60.

    Guo, J. et al. Differential sensitization of different prostate cancer cells to apoptosis. Genes Cancer1(8), 836–846 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Gupta, K. et al. Green tea polyphenols induce p53-dependent and p53-independent apoptosis in prostate cancer cells through two distinct mechanisms. PLoS ONE7(12), e52572 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Guo, Y.-x et al. Jungermannenone A and B induce ROS- and cell cycle-dependent apoptosis in prostate cancer cells in vitro. Acta Pharmacol. Sin.37(6), 814–824 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Li, R. et al. Capilliposide C derived from Lysimachia capillipes Hemsl inhibits growth of human prostate cancer PC3 cells by targeting caspase and MAPK pathways. Int. Urol. Nephrol.46(7), 1335–1344 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Li, X., Shen, X., Xu, J., Li, X. & Ma, S. Hydration properties of the alite–ye’elimite cement clinker synthesized by reformation. Constr. Build. Mater.99, 254–259 (2015).

    ADS 

    Google Scholar
     

  • 65.

    Koh, D. W., Dawson, T. M. & Dawson, V. L. Mediation of cell death by poly(ADP-ribose) polymerase-1. Pharmacol. Res.52(1), 5–14 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Braicu, C. et al. A comprehensive review on MAPK: A promising therapeutic target in cancer. Cancers11(10), 1618 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 67.

    Khandrika, L. et al. Hypoxia-associated p38 mitogen-activated protein kinase-mediated androgen receptor activation and increased HIF-1α levels contribute to emergence of an aggressive phenotype in prostate cancer. Oncogene28(9), 1248–1260 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Nickols, N. G. et al. MEK-ERK signaling is a therapeutic target in metastatic castration resistant prostate cancer. Prostate Cancer Prostat. Dis.22(4), 531–538 (2019).

    CAS 

    Google Scholar
     



  • Source link

    2 thoughts on “Marine alkaloid monanchoxymycalin C: a new specific activator of JNK1/2 kinase with anticancer properties”
    1. We’ve got a comprehensive guide on the amazing, science-backed health benefits of green tea here. In a nutshell, green tea contains unique polyphenols called catechins.

    2. Obesity or weight gain is one of the biggest problems our world is facing today. A sedentary lifestyle, combined with the craving for junk foods and drinks is leading to several obesity-related problems like heart disease, diabetes, hypertension, etc. To overcome these problems, we must incorporate green tea into our daily diet.In fact, Green Tea contains a number of substances that aid in weight loss in different ways.

    Leave a Reply

    Your email address will not be published. Required fields are marked *