CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl Acad. Sci. USA 104, 13268–13272 (2007). Provides evidence from 201 different field studies globally that the soil-erosion rates in no-till agriculture is similar to soil-production rates and can be considered as a sustainable agricultural practice.


    Google Scholar
     

  • 2.

    Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).


    Google Scholar
     

  • 3.

    Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).


    Google Scholar
     

  • 4.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).


    Google Scholar
     

  • 5.

    Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).


    Google Scholar
     

  • 6.

    Pérez, A. P. & Eugenio, N. R. Status of local soil contamination in Europe (European Commission, 2018).

  • 7.

    Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z. & McGrath, S. P. Soil contamination in China: current status and mitigation strategies. Environ. Sci. Technol. 49, 750–759 (2015).


    Google Scholar
     

  • 8.

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).


    Google Scholar
     

  • 9.

    Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. & Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 132, 105078 (2019).


    Google Scholar
     

  • 10.

    Türkdoğan, M. K., Kilicel, F., Kara, K., Tuncer, I. & Uygan, I. Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environ. Toxicol. Pharmacol. 13, 175–179 (2003).


    Google Scholar
     

  • 11.

    O’Connor, D., Hou, D., Ok, Y. S. & Lanphear, B. P. The effects of iniquitous lead exposure on health. Nat. Sustain. 3, 77–79 (2020). A comprehensive comment on human-health impacts of lead exposure, which deserves global attention to reduce its concentrations in consumer products and soil environment.


    Google Scholar
     

  • 12.

    Rodríguez Eugenio, N., McLaughlin, M. & Pennock, D. Soil pollution: a hidden reality (FAO, 2018).

  • 13.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011). Found that the global crop demand of 2050 could be achieved by attaining high yields on existing croplands of underyielding nations.


    Google Scholar
     

  • 14.

    Ministry of Environmental Protection. China national soil contamination survey report (CWR, 2014).

  • 15.

    Hou, D. & Li, F. Complexities surrounding China’s soil action plan. Land Degrad. Dev. 28, 2315–2320 (2017).


    Google Scholar
     

  • 16.

    Hu, Y., Cheng, H. & Tao, S. The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environ. Int. 92–93, 515–532 (2016).


    Google Scholar
     

  • 17.

    Antoniadis, V. et al. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? – a review. Environ. Int. 127, 819–847 (2019).


    Google Scholar
     

  • 18.

    United Nations Environment Assembly of the United Nations Environment Programme. Managing soil pollution to achieve sustainable development (UNEP, 2018).

  • 19.

    Food and Agriculture Organization of the United Nations. The state of food security and nutrition in the world (FAO, 2019).

  • 20.

    Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003). Outlines the serious human-health impacts of heavy metal(loid)s exposure.


    Google Scholar
     

  • 21.

    British Geological Survey. World mineral statistics data. BGS https://www.bgs.ac.uk/mineralsuk/statistics/home.html (2019).

  • 22.

    Dominish, E., Teske, S. & Florin, N. Responsible minerals sourcing for renewable energy (UTS, 2019).

  • 23.

    Mulligan, C. N., Yong, R. N. & Gibbs, B. F. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng. Geol. 60, 193–207 (2001).


    Google Scholar
     

  • 24.

    Rogich, D. G. & Matos, G. R. The global flows of metals and minerals (USGS, 2008).

  • 25.

    Yin, W. J., Yang, J. H., Kang, J., Yan, Y. & Wei, S. H. Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015).


    Google Scholar
     

  • 26.

    Li, B., Zheng, M., Xue, H. & Pang, H. High performance electrochemical capacitor materials focusing on nickel based materials. Inorg. Chem. Front. 3, 175–202 (2016).


    Google Scholar
     

  • 27.

    Tóth, G., Hermann, T., Da Silva, M. R. & Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 88, 299–309 (2016). Provides evidence that only 6.24% of European agricultural lands needs local assessment and remediation action to reduce the heavy metal(loid)s contaminations.


    Google Scholar
     

  • 28.

    Boussen, S., Soubrand, M., Bril, H., Ouerfelli, K. & Abdeljaouad, S. Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma 192, 227–236 (2013).


    Google Scholar
     

  • 29.

    Navarro, M. C. et al. Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J. Geochem. Explor. 96, 183–193 (2008).


    Google Scholar
     

  • 30.

    Atafar, Z. et al. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 160, 83–89 (2010).


    Google Scholar
     

  • 31.

    Srivastava, S. K., Tyagi, R. & Pant, N. Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res. 23, 1161–1165 (1989).


    Google Scholar
     

  • 32.

    Walter, I., Martínez, F. & Cala, V. Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses. Environ. Pollut. 139, 507–514 (2006).


    Google Scholar
     

  • 33.

    Chaoua, S., Boussaa, S., El Gharmali, A. & Boumezzough, A. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J. Saudi Soc. Agric. Sci. 18, 429–436 (2019).


    Google Scholar
     

  • 34.

    Balkhair, K. S. & Ashraf, M. A. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J. Biol. Sci. 23, S32–S44 (2016).


    Google Scholar
     

  • 35.

    Bi, X. et al. Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environ. Int. 32, 883–890 (2006).


    Google Scholar
     

  • 36.

    Noli, F. & Tsamos, P. Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Sci. Total Environ. 563–564, 377–385 (2016).


    Google Scholar
     

  • 37.

    Zhang, F. et al. Influence of traffic activity on heavy metal concentrations of roadside farmland soil in mountainous areas. Int. J. Environ. Res. Public Health 9, 1715–1731 (2012).


    Google Scholar
     

  • 38.

    Ogunkunle, C. O. & Fatoba, P. O. Pollution loads and the ecological risk assessment of soil heavy metals around a mega cement factory in southwest Nigeria. Pol. J. Environ. Stud. 22, 487–493 (2013).


    Google Scholar
     

  • 39.

    Luo, C. et al. Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J. Hazard. Mater. 186, 481–490 (2011).


    Google Scholar
     

  • 40.

    Hou, D., O’Connor, D., Nathanail, P., Tian, L. & Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review. Environ. Pollut. 231, 1188–1200 (2017).


    Google Scholar
     

  • 41.

    Motamen Salehi, F., Khaemba, D. N., Morina, A. & Neville, A. Corrosive–abrasive wear induced by soot in boundary lubrication regime. Tribol. Lett. 63, 19 (2016).


    Google Scholar
     

  • 42.

    Lu, A. et al. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci. Total Environ. 425, 66–74 (2012).


    Google Scholar
     

  • 43.

    Nziguheba, G. & Smolders, E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci. Total Environ. 390, 53–57 (2008).


    Google Scholar
     

  • 44.

    Wang, X. et al. Evolving wastewater infrastructure paradigm to enhance harmony with nature. Sci. Adv. 4, eaaq0210 (2018).


    Google Scholar
     

  • 45.

    Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z. & Zhu, Y. G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 152, 686–692 (2008).


    Google Scholar
     

  • 46.

    Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C. & Chambers, B. J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 311, 205–219 (2003).


    Google Scholar
     

  • 47.

    Clemens, S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707–1719 (2006).


    Google Scholar
     

  • 48.

    Marrugo-Negrete, J., Pinedo-Hernández, J. & Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 154, 380–388 (2017).


    Google Scholar
     

  • 49.

    Micó, C., Recatalá, L., Peris, M. & Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 65, 863–872 (2006).


    Google Scholar
     

  • 50.

    Facchinelli, A., Sacchi, E. & Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 114, 313–324 (2001).


    Google Scholar
     

  • 51.

    Shan, Y. et al. Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. J. Soils Sediments 13, 720–729 (2013).


    Google Scholar
     

  • 52.

    Li, X., Lee, S., Wong, S., Shi, W. & Thornton, I. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environ. Pollut. 129, 113–124 (2004).


    Google Scholar
     

  • 53.

    Zhou, J., Feng, K., Pei, Z., Meng, F. & Sun, J. Multivariate analysis combined with GIS to source identification of heavy metals in soils around an abandoned industrial area, Eastern China. Ecotoxicology 25, 380–388 (2016).


    Google Scholar
     

  • 54.

    Barbieri, M., Sappa, G. & Nigro, A. Soil pollution: anthropogenic versus geogenic contributions over large areas of the Lazio region. J. Geochem. Explor. 195, 78–86 (2018).


    Google Scholar
     

  • 55.

    Palumbo, B. et al. Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma 95, 247–266 (2000).


    Google Scholar
     

  • 56.

    Cao, X., Ma, L. Q., Chen, M., Hardison, D. W. & Harris, W. G. Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci. Total Environ. 307, 179–189 (2003).


    Google Scholar
     

  • 57.

    Knechtenhofer, L. A., Xifra, I. O., Scheinost, A. C., Flühler, H. & Kretzschmar, R. Fate of heavy metals in a strongly acidic shooting-range soil: small-scale metal distribution and its relation to preferential water flow. J. Plant Nutr. Soil Sci. 166, 84–92 (2003).


    Google Scholar
     

  • 58.

    Fang, W., Wei, Y. & Liu, J. Comparative characterization of sewage sludge compost and soil: heavy metal leaching characteristics. J. Hazard. Mater. 310, 1–10 (2016).


    Google Scholar
     

  • 59.

    Düring, R. A., Hoß, T. & Gäth, S. Sorption and bioavailability of heavy metals in long-term differently tilled soils amended with organic wastes. Sci. Total Environ. 313, 227–234 (2003).


    Google Scholar
     

  • 60.

    Angelova, V., Ivanova, R., Delibaltova, V. & Ivanov, K. Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind. Crop. Prod. 19, 197–205 (2004).


    Google Scholar
     

  • 61.

    Greinert, A. The heterogeneity of urban soils in the light of their properties. J. Soils Sediments 15, 1725–1737 (2015).


    Google Scholar
     

  • 62.

    Fisher-Power, L. M., Cheng, T. & Rastghalam, Z. S. Cu and Zn adsorption to a heterogeneous natural sediment: Influence of leached cations and natural organic matter. Chemosphere 144, 1973–1979 (2016).


    Google Scholar
     

  • 63.

    Zhang, Y. et al. Lead contamination in Chinese surface soils: source identification, spatial-temporal distribution and associated health risks. Crit. Rev. Environ. Sci. Technol. 49, 1386–1423 (2019). The soil lead pollution in China is more severe, with hotspots due to anthropogenic activities.


    Google Scholar
     

  • 64.

    Dimitrijević, M. D., Nujkić, M. M., Alagić, S., Milić, S. M. & Tošić, S. B. Heavy metal contamination of topsoil and parts of peach-tree growing at different distances from a smelting complex. Int. J. Environ. Sci. Technol. 13, 615–630 (2016).


    Google Scholar
     

  • 65.

    Alsbou, E. M. E. & Al-Khashman, O. A. Heavy metal concentrations in roadside soil and street dust from Petra region, Jordan. Environ. Monit. Assess. 190, 48 (2017).


    Google Scholar
     

  • 66.

    Romic, M. & Romic, D. Heavy metals distribution in agricultural topsoils in urban area. Environ. Geol. 43, 795–805 (2003).


    Google Scholar
     

  • 67.

    Jin, Y. et al. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ. Int. 124, 320–328 (2019).


    Google Scholar
     

  • 68.

    Li, C., Li, F., Wu, Z. & Cheng, J. Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China. Environ. Pollut. 206, 264–274 (2015).


    Google Scholar
     

  • 69.

    Rodríguez Martín, J. A., Arias, M. L. & Grau Corbí, J. M. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environ. Pollut. 144, 1001–1012 (2006).


    Google Scholar
     

  • 70.

    Feng, X. & Qiu, G. Mercury pollution in Guizhou, Southwestern China — an overview. Sci. Total Environ. 400, 227–237 (2008).


    Google Scholar
     

  • 71.

    Zhao, H., Xia, B., Fan, C., Zhao, P. & Shen, S. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Sci. Total Environ. 417–418, 45–54 (2012).


    Google Scholar
     

  • 72.

    Gusev, A. et al. Assessment of transboundary pollution by toxic substances: heavy metals and POPs (EMEP, 2019).

  • 73.

    Chen, H., Teng, Y., Lu, S., Wang, Y. & Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 512–513, 143–153 (2015).


    Google Scholar
     

  • 74.

    Li, W. et al. The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China. Sci. Total Environ. 472, 407–420 (2014).


    Google Scholar
     

  • 75.

    Wang, X. et al. Climate and vegetation as primary drivers for global mercury storage in surface soil. Environ. Sci. Technol. 53, 10665–10675 (2019).


    Google Scholar
     

  • 76.

    Caporale, A. G. & Violante, A. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr. Pollut. Rep. 2, 15–27 (2016).


    Google Scholar
     

  • 77.

    Antoniadis, V., Golia, E. E., Shaheen, S. M. & Rinklebe, J. Bioavailability and health risk assessment of potentially toxic elements in Thriasio Plain, near Athens, Greece. Environ. Geochem. Health 39, 319–330 (2017).


    Google Scholar
     

  • 78.

    O’Connor, D. et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review. Environ. Int. 126, 747–761 (2019).


    Google Scholar
     

  • 79.

    Kim, R. Y. et al. Bioavailability of heavy metals in soils: definitions and practical implementation — a critical review. Environ. Geochem. Health 37, 1041–1061 (2015).


    Google Scholar
     

  • 80.

    Okoro, H. K., Fatoki, O. S., Adekola, F. A., Ximba, B. J. & Snyman, R. G. A review of sequential extraction procedures for heavy metals speciation in soil and sediments. Open Access. Sci. Rep. 1, 1–9 (2012).


    Google Scholar
     

  • 81.

    Hettiarachchi, G. M. & Pierzynski, G. M. Soil lead bioavailability and in situ remediation of lead-contaminated soils: a review. Environ. Prog. 23, 78–93 (2004).


    Google Scholar
     

  • 82.

    Shahid, M., Dumat, C., Khalid, S., Niazi, N. K. & Antunes, P. M. C. in Reviews of Environmental Contamination and Toxicology (eds Gunther, F. A. & de Voogt, P.) 73–137 (Springer, 2016).

  • 83.

    Vromman, D., Martínez, J. P., Kumar, M., Šlejkovec, Z. & Lutts, S. Comparative effects of arsenite (As(III)) and arsenate (As(V)) on whole plants and cell lines of the arsenic-resistant halophyte plant species Atriplex atacamensis. Environ. Sci. Pollut. Res. 25, 34473–34486 (2018).


    Google Scholar
     

  • 84.

    Rieuwerts, J. S., Thornton, I., Farago, M. E. & Ashmore, M. R. Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem. Speciat. Bioavailab. 10, 61–75 (1998).


    Google Scholar
     

  • 85.

    Antoniadis, V. et al. Trace elements in the soil–plant interface: phytoavailability, translocation, and phytoremediation–a review. Earth-Sci. Rev. 171, 621–645 (2017).


    Google Scholar
     

  • 86.

    Wang, X. & Tang, C. The role of rhizosphere pH in regulating the rhizosphere priming effect and implications for the availability of soil-derived nitrogen to plants. Ann. Bot. 121, 143–151 (2018).


    Google Scholar
     

  • 87.

    Tao, H., Pan, W. L., Carter, P. & Wang, K. Addition of lignin to lime materials for expedited pH increase and improved vertical mobility of lime in no-till soils. Soil Use Manag. 35, 314–322 (2019).


    Google Scholar
     

  • 88.

    Jing, F. et al. Biochar effects on soil chemical properties and mobilization of cadmium (Cd) and lead (Pb) in paddy soil. Soil Use Manag. 36, 320–327 (2020).


    Google Scholar
     

  • 89.

    Aijun, Y., Changle, Q., Shusen, M. & Reardon, E. J. Effects of humus on the environmental activity of mineral-bound Hg: Influence on Hg volatility. Appl. Geochem. 21, 446–454 (2006).


    Google Scholar
     

  • 90.

    Beckers, F. & Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: a review. Crit. Rev. Environ. Sci. Technol. 47, 693–794 (2017).


    Google Scholar
     

  • 91.

    Wallschläger, D., Desai, M. V. M., Spengler, M. & Wilken, R.-D. Mercury speciation in floodplain soils and sediments along a contaminated river transect. J. Environ. Qual. 27, 1034 (1998).


    Google Scholar
     

  • 92.

    Shaheen, S. M. & Rinklebe, J. Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma 228–229, 142–159 (2014).


    Google Scholar
     

  • 93.

    Park, J. H. et al. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 185, 549–574 (2011).


    Google Scholar
     

  • 94.

    Chibuike, G. U. & Obiora, S. C. Heavy metal polluted soils: effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 752708 (2014).


    Google Scholar
     

  • 95.

    Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M. & Thamaraiselvi, K. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 146, 270–277 (2007).


    Google Scholar
     

  • 96.

    Dary, M., Chamber-Pérez, M. A., Palomares, A. J. & Pajuelo, E. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J. Hazard. Mater. 177, 323–330 (2010).


    Google Scholar
     

  • 97.

    Sarma, H. Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J. Environ. Sci. Technol. 4, 118–138 (2011).


    Google Scholar
     

  • 98.

    Hou, D. et al. A sustainability assessment framework for agricultural land remediation in China. Land Degrad. Dev. 29, 1005–1018 (2018).


    Google Scholar
     

  • 99.

    Hou, D. Sustainable Remediation of Contaminated Soil and Groundwater: Materials, Processes, and Assessment (Butterworth-Heinemann, 2019).

  • 100.

    Song, Y. et al. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: a review. Sci. Total Environ. 663, 568–579 (2019).


    Google Scholar
     

  • 101.

    Hou, D. & Al-Tabbaa, A. Sustainability: a new imperative in contaminated land remediation. Environ. Sci. Policy 39, 25–34 (2014).


    Google Scholar
     

  • 102.

    Visoottiviseth, P., Francesconi, K. & Sridokchan, W. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ. Pollut. 118, 453–461 (2002).


    Google Scholar
     

  • 103.

    Zhao, F. J., Lombi, E. & McGrath, S. P. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249, 37–43 (2003).


    Google Scholar
     

  • 104.

    Angassa, K., Leta, S., Mulat, W., Kloos, H. & Meers, E. Evaluation of pilot-scale constructed wetlands with Phragmites karka for phytoremediation of municipal wastewater and biomass production in Ethiopia. Environ. Process. 6, 65–84 (2019).


    Google Scholar
     

  • 105.

    Wang, L. et al. Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives. Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643389.2019.1705724 (2019). Suggests that phytomining and phytoremediation are nature-based solutions for soil pollution, but there are several limitations that have to be addressed.

    Article 

    Google Scholar
     

  • 106.

    Keller, C., Ludwig, C., Davoli, F. & Wochele, J. Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environ. Sci. Technol. 39, 3359–3367 (2005). Found that the biochar production is a sound technique to increase recovery of Cd and Zn from plant biomass.


    Google Scholar
     

  • 107.

    Chalot, M., Blaudez, D., Rogaume, Y., Provent, A.-S. & Pascual, C. Fate of trace elements during the combustion of phytoremediation wood. Environ. Sci. Technol. 46, 13361–13369 (2012).


    Google Scholar
     

  • 108.

    Schreurs, E., Voets, T. & Thewys, T. GIS-based assessment of the biomass potential from phytoremediation of contaminated agricultural land in the Campine region in Belgium. Biomass Bioenergy 35, 4469–4480 (2011).


    Google Scholar
     

  • 109.

    Schröder, P. et al. Intensify production, transform biomass to energy and novel goods and protect soils in Europe — a vision how to mobilize marginal lands. Sci. Total Environ. 616–617, 1101–1123 (2018).


    Google Scholar
     

  • 110.

    Andersson-Sköld, Y., Hagelqvist, A., Crutu, G. & Blom, S. Bioenergy grown on contaminated land – a sustainable bioenergy contributor? Biofuels 5, 487–498 (2014).


    Google Scholar
     

  • 111.

    Huang, H. et al. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue. Bioresour. Technol. 249, 487–493 (2018).


    Google Scholar
     

  • 112.

    Murtaza, G., Javed, W., Hussain, A., Qadir, M. & Aslam, M. Soil-applied zinc and copper suppress cadmium uptake and improve the performance of cereals and legumes. Int. J. Phytoremediat. 19, 199–206 (2017).


    Google Scholar
     

  • 113.

    Ahmad, P. et al. Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS One 10, e0114571 (2015).


    Google Scholar
     

  • 114.

    Meharg, A. A. & Macnair, M. R. Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J. Exp. Bot. 43, 519–524 (1992).


    Google Scholar
     

  • 115.

    Shahid, M. et al. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J. Hazard. Mater. 325, 36–58 (2017).


    Google Scholar
     

  • 116.

    Che-Castaldo, J. P. & Inouye, D. W. Interspecific competition between a non-native metal-hyperaccumulating plant (Noccaea caerulescens, Brassicaceae) and a native congener across a soil-metal gradient. Aust. J. Bot. 63, 141 (2015).


    Google Scholar
     

  • 117.

    Moreno, F. N., Anderson, C. W. N., Stewart, R. B. & Robinson, B. H. Phytoremediation of mercury-contaminated mine tailings by induced plant-mercury accumulation. Environ. Pract. 6, 165–175 (2004).


    Google Scholar
     

  • 118.

    Zhang, L., Rylott, E. L., Bruce, N. C. & Strand, S. E. Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT. Planta 249, 1007–1015 (2019).


    Google Scholar
     

  • 119.

    Guidi Nissim, W. & Labrecque, M. Planting microcuttings: an innovative method for establishing a willow vegetation cover. Ecol. Eng. 91, 472–476 (2016).


    Google Scholar
     

  • 120.

    Bhuiyan, M. S. I., Raman, A. & Hodgkins, D. S. Plants in remediating salinity-affected agricultural landscapes. Proc. Indian Natl Sci. Acad. 83, 51–66 (2017).


    Google Scholar
     

  • 121.

    Cohen, C. K., Fox, T. C., Garvin, D. F. & Kochian, L. V. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol. 116, 1063–72 (1998). Provides evidence that plant accumulation of heavy metal(loid)s can be improved under iron deficiency in soil.


    Google Scholar
     

  • 122.

    Luo, J., He, W., Xing, X., Wu, J. & Sophie Gu, X. W. The variation of metal fractions and potential environmental risk in phytoremediating multiple metal polluted soils using Noccaea caerulescens assisted by LED lights. Chemosphere 227, 462–469 (2019).


    Google Scholar
     

  • 123.

    Fu, Y. et al. Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai). Sci. Hortic. 214, 51–57 (2017).


    Google Scholar
     

  • 124.

    Niazi, N. K. et al. Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: Morphological and physiological response. Int. J. Phytoremediat. 19, 670–678 (2017).


    Google Scholar
     

  • 125.

    Iqbal, M., Puschenreiter, M., Oburger, E., Santner, J. & Wenzel, W. W. Sulfur-aided phytoextraction of Cd and Zn by Salix smithiana combined with in situ metal immobilization by gravel sludge and red mud. Environ. Pollut. 170, 222–231 (2012).


    Google Scholar
     

  • 126.

    Cameselle, C. & Gouveia, S. Phytoremediation of mixed contaminated soil enhanced with electric current. J. Hazard. Mater. 361, 95–102 (2019).


    Google Scholar
     

  • 127.

    Rehman, K., Imran, A., Amin, I. & Afzal, M. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J. Hazard. Mater. 349, 242–251 (2018).


    Google Scholar
     

  • 128.

    Wang, X. et al. Transgenic tobacco plants expressing a P1B-ATPase gene from Populus tomentosa Carr. (PtoHMA5) demonstrate improved cadmium transport. Int. J. Biol. Macromol. 113, 655–661 (2018).


    Google Scholar
     

  • 129.

    Ma, L. Q. et al. A fern that hyperaccumulates arsenic. Nature 409, 579 (2001). Found that fern Pteris vittata (brake fern) is highly efficient in phytoremediation of arsenic in contaminated soils.


    Google Scholar
     

  • 130.

    Rascio, N. & Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 180, 169–181 (2011).


    Google Scholar
     

  • 131.

    Li, Z., Wu, L., Luo, Y. & Christie, P. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator. Chemosphere 194, 432–440 (2018).


    Google Scholar
     

  • 132.

    Tőzsér, D. et al. Phytoextraction with Salix viminalis in a moderately to strongly contaminated area. Environ. Sci. Pollut. Res. 25, 3275–3290 (2018).


    Google Scholar
     

  • 133.

    Chandra, R. & Kang, H. Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. For. Sci. Technol. 12, 55–61 (2016).


    Google Scholar
     

  • 134.

    Luo, J., Qi, S., Gu, X. W. S., Wang, J. & Xie, X. Evaluation of the phytoremediation effect and environmental risk in remediation processes under different cultivation systems. J. Clean. Prod. 119, 25–31 (2016).


    Google Scholar
     

  • 135.

    Hu, R. et al. Intercropping with hyperaccumulator plants decreases the cadmium accumulation in grape seedlings. Acta Agric. Scand. B Soil Plant Sci. 69, 304–310 (2019).


    Google Scholar
     

  • 136.

    Praveen, A., Mehrotra, S. & Singh, N. Mixed plantation of wheat and accumulators in arsenic contaminated plots: a novel way to reduce the uptake of arsenic in wheat and load on antioxidative defence of plant. Ecotoxicol. Environ. Saf. 182, 109462 (2019).


    Google Scholar
     

  • 137.

    Ewel, J. J., Schreeg, L. A. & Sinclair, T. R. Resources for crop production: accessing the unavailable. Trends Plant Sci. 24, 121–129 (2019).


    Google Scholar
     

  • 138.

    Wan, X., Lei, M., Chen, T. & Yang, J. Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil. Sci. Total Environ. 579, 1467–1475 (2017).


    Google Scholar
     

  • 139.

    Smith, E., Juhasz, A. L., Weber, J. & Naidu, R. Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water. Sci. Total Environ. 392, 277–283 (2008).


    Google Scholar
     

  • 140.

    ur Rehman, M. Z. et al. Remediation of heavy metal contaminated soils by using Solanum nigrum: a review. Ecotoxicol. Environ. Saf. 143, 236–248 (2017).


    Google Scholar
     

  • 141.

    Cheng, S. F., Huang, C. Y., Lin, Y. C., Lin, S. C. & Chen, K. L. Phytoremediation of lead using corn in contaminated agricultural land-An in situ study and benefit assessment. Ecotoxicol. Environ. Saf. 111, 72–77 (2015).


    Google Scholar
     

  • 142.

    Jeong, S., Moon, H. S. & Nam, K. Increased ecological risk due to the hyperaccumulation of As in Pteris cretica during the phytoremediation of an As-contaminated site. Chemosphere 122, 1–7 (2015).


    Google Scholar
     

  • 143.

    Li, Z., Jia, M., Wu, L., Christie, P. & Luo, Y. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola. Environ. Pollut. 209, 123–131 (2016).


    Google Scholar
     

  • 144.

    Jiang, J. et al. Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. Eur. J. Soil Biol. 46, 18–26 (2010).


    Google Scholar
     

  • 145.

    Hou, X. et al. Pb stress effects on leaf chlorophyll fluorescence, antioxidative enzyme activities, and organic acid contents of Pogonatherum crinitum seedlings. Flora 240, 82–88 (2018).


    Google Scholar
     

  • 146.

    Shen, Z., Wang, Y., Chen, Y. & Zhang, Z. Transfer of heavy metals from the polluted rhizosphere soil to Celosia argentea L. in copper mine tailings. Hortic. Environ. Biotechnol. 58, 93–100 (2017).


    Google Scholar
     

  • 147.

    Pratas, J., Favas, P. J. C., Varun, M., D’Souza, R. & Paul, M. S. Distribution of rare earth elements, thorium and uranium in streams and aquatic mosses of Central Portugal. Environ. Earth Sci. 76, 156 (2017).


    Google Scholar
     

  • 148.

    Bennett, L. E. et al. Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual. 32, 432–440 (2003).


    Google Scholar
     

  • 149.

    Van Huysen, T. et al. Overexpression of cystathionine-γ-synthase enhances selenium volatilization in Brassica juncea. Planta 218, 71–78 (2003).


    Google Scholar
     

  • 150.

    Davison, J. Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J. Ind. Microbiol. Biotechnol. 32, 639–650 (2005).


    Google Scholar
     

  • 151.

    Al-Ahmad, H., Galili, S. & Gressel, J. Tandem constructs to mitigate transgene persistence: tobacco as a model. Mol. Ecol. 13, 697–710 (2004).


    Google Scholar
     

  • 152.

    Shrestha, P., Bellitürk, K. & Görres, J. H. Phytoremediation of heavy metal-contaminated soil by switchgrass: a comparative study utilizing different composts and coir fiber on pollution remediation, plant productivity, and nutrient leaching. Int. J. Environ. Res. Public Health 16, 1261 (2019).


    Google Scholar
     

  • 153.

    Din, B. U. et al. Assisted phytoremediation of chromium spiked soils by Sesbania sesban in association with Bacillus xiamenensis PM14: a biochemical analysis. Plant Physiol. Biochem. 146, 249–258 (2020).


    Google Scholar
     

  • 154.

    Zhang, X. et al. Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in pyrene-Ni co-contaminated soils. Chemosphere 241, 125027 (2020).


    Google Scholar
     

  • 155.

    Willscher, S. et al. Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy 131–132, 46–53 (2013).


    Google Scholar
     

  • 156.

    Baker, A. J. M., McGrath, S. P., Sidoli, C. M. D. & Reeves, R. D. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recycl. 11, 41–49 (1994).


    Google Scholar
     

  • 157.

    Kidd, P. et al. Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int. J. Phytoremediat. 17, 1005–1037 (2015).


    Google Scholar
     

  • 158.

    Ji, P., Sun, T., Song, Y., Ackland, M. L. & Liu, Y. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environ. Pollut. 159, 762–768 (2011).


    Google Scholar
     

  • 159.

    Li, N. et al. Effects of double harvesting on heavy metal uptake by six forage species and the potential for phytoextraction in field. Pedosphere 26, 717–724 (2016).


    Google Scholar
     

  • 160.

    Lim, J. E. et al. Impact of natural and calcined starfish (Asterina pectinifera) on the stabilization of Pb, Zn and As in contaminated agricultural soil. Environ. Geochem. Health 39, 431–441 (2017).


    Google Scholar
     

  • 161.

    Mertens, J., Vervaeke, P., Meers, E. & Tack, F. M. G. Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment. Environ. Sci. Technol. 40, 1962–1968 (2006).


    Google Scholar
     

  • 162.

    Sampanpanish, P. & Nanthavong, K. Effect of EDTA and NTA on arsenic bioaccumulation and translocation using phytoremediation by Mimosa pudica L. from contaminated soils. Bull. Environ. Contam. Toxicol. 102, 140–145 (2019).


    Google Scholar
     

  • 163.

    Wan, X., Lei, M. & Chen, T. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci. Total Environ. 563–564, 796–802 (2016). Illustrates that the phytoremediation renders low environmental impacts and costs compared with other remediation technologies.


    Google Scholar
     

  • 164.

    Ruttens, A. et al. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Int. J. Phytoremediat. 13, 194–207 (2011). Suggests phytoremediation with tolerant plant species for adverse environmental conditions is a promising remediation method for mine tailings.


    Google Scholar
     

  • 165.

    Touceda-González, M. et al. Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. J. Environ. Manage. 186, 301–313 (2017).


    Google Scholar
     

  • 166.

    Grobelak, A. et al. Effects of single sewage sludge application on soil phytoremediation. J. Clean. Prod. 155, 189–197 (2017).


    Google Scholar
     

  • 167.

    Galende, M. A. et al. Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb-Zn contaminated mine soil. J. Geochem. Explor. 145, 181–189 (2014).


    Google Scholar
     

  • 168.

    Panda, D., Panda, D., Padhan, B. & Biswas, M. Growth and physiological response of lemongrass (Cymbopogon citratus (D.C.) Stapf.) under different levels of fly ash-amended soil. Int. J. Phytoremediat. 20, 538–544 (2018).


    Google Scholar
     

  • 169.

    Kursun Unver, I. & Terzi, M. Distribution of trace elements in coal and coal fly ash and their recovery with mineral processing practices: a review. J. Min. Environ. 9, 641–655 (2018).


    Google Scholar
     

  • 170.

    Blissett, R. S. & Rowson, N. A. A review of the multi-component utilisation of coal fly ash. Fuel 97, 1–23 (2012).


    Google Scholar
     

  • 171.

    Li, X., Wang, X., Chen, Y., Yang, X. & Cui, Z. Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment. Ecotoxicol. Environ. Saf. 168, 1–8 (2019).


    Google Scholar
     

  • 172.

    Khaokaew, S. & Landrot, G. A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot district, Tak Province, Thailand: (1) Determination of Cd-hyperaccumulating plants. Chemosphere 138, 883–887 (2015).


    Google Scholar
     

  • 173.

    Chen, Y., Shen, Z. & Li, X. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl. Geochem. 19, 1553–1565 (2004).


    Google Scholar
     

  • 174.

    Wang, L., Ji, B., Hu, Y., Liu, R. & Sun, W. A review on in situ phytoremediation of mine tailings. Chemosphere 184, 594–600 (2017).


    Google Scholar
     

  • 175.

    Vangronsveld, J. et al. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ. Sci. Pollut. Res. 16, 765–794 (2009).


    Google Scholar
     

  • 176.

    Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D’Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl Acad. Sci. USA 109, 16213–16216 (2012).


    Google Scholar
     

  • 177.

    Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016). Provides evidence that inter-organism interactions of soil microorganisms are significant in biogeochemical cycling of carbon, nitrogen, sulfur and hydrogen.


    Google Scholar
     

  • 178.

    Serna-Chavez, H. M., Fierer, N. & Van Bodegom, P. M. Global drivers and patterns of microbial abundance in soil. Glob. Ecol. Biogeogr. 22, 1162–1172 (2013). Illustrates that soil microbial biomass is not primarily driven by soil temperature but by soil moisture and nutrients availability.


    Google Scholar
     

  • 179.

    Madsen, E. L. Microorganisms and their roles in fundamental biogeochemical cycles. Curr. Opin. Biotechnol. 22, 456–464 (2011). A comprehensive view of the microbially mediated biogeochemical processes that transform and recycle organic and inorganic substances in soils, sediments and waters.


    Google Scholar
     

  • 180.

    Lovley, D. R. Cleaning up with genomics: applying molecular biology to bioremediation. Nat. Rev. Microbiol. 1, 35–44 (2003). A comprehensive view of the application of genome-enabled techniques for bioremediation.


    Google Scholar
     

  • 181.

    Gadd, G. M. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. 11, 271–279 (2000). The environmental fate of toxic metals and radionuclides is determined by diverse mechanisms of microorganisms.


    Google Scholar
     

  • 182.

    Rajendran, P., Muthukrishnan, J. & Gunasekaran, P. Microbes in heavy metal remediation. Indian. J. Exp. Biol. 41, 935–944 (2003).


    Google Scholar
     

  • 183.

    Pushpanathan, M., Jayashree, S., Gunasekaran, P. & Rajendhran, J. in Microbial Biodegradation and Bioremediation (ed. Das, S.) 407–419 (Elsevier, 2014).

  • 184.

    Kavamura, V. N. & Esposito, E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv. 28, 61–69 (2010).


    Google Scholar
     

  • 185.

    Gadd, G. M. Microbial influence on metal mobility and application for bioremediation. Geoderma 122, 109–119 (2004).


    Google Scholar
     

  • 186.

    Gadd, G. M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156, 609–643 (2010). Microbial transformations of metals and minerals are vital biosphere processes, with both beneficial and detrimental impacts on human society.


    Google Scholar
     

  • 187.

    Hesse, E. et al. Anthropogenic remediation of heavy metals selects against natural microbial remediation. Proc. R. Soc. B Biol. Sci. 286, 20190804 (2019).


    Google Scholar
     

  • 188.

    Luján, A. M., Gómez, P. & Buckling, A. Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil. Biol. Lett. 11, 20140934 (2015).


    Google Scholar
     

  • 189.

    Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637 (2010).


    Google Scholar
     

  • 190.

    Hesse, E. et al. Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol. Lett. 21, 117–127 (2018).


    Google Scholar
     

  • 191.

    O’Brien, S. & Buckling, A. The sociality of bioremediation: Hijacking the social lives of microbial populations to clean up heavy metal contamination. EMBO Rep. 16, 1241–5 (2015).


    Google Scholar
     

  • 192.

    Diels, L., De Smet, M., Hooyberghs, L. & Corbisier, P. Heavy metals bioremediation of soil. Mol. Biotechnol. 12, 149–158 (1999).


    Google Scholar
     

  • 193.

    Shenker, M. & Chen, Y. Increasing iron availability to crops: fertilizers, organo-fertilizers, and biological approaches. Soil Sci. Plant Nutr. 51, 1–17 (2005).


    Google Scholar
     

  • 194.

    Blowes, D. W., Ptacek, C. J., Jambor, J. L. & Weisener, C. G. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 149–204 (Elsevier, 2003).

  • 195.

    White, C., Shaman, A. K. & Gadd, G. M. An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat. Biotechnol. 16, 572–575 (1998).


    Google Scholar
     

  • 196.

    Chang, C.-Y., Chen, S.-Y., Klipkhayai, P. & Chiemchaisri, C. Bioleaching of heavy metals from harbor sediment using sulfur-oxidizing microflora acclimated from native sediment and exogenous soil. Environ. Sci. Pollut. Res. 26, 6818–6828 (2019).


    Google Scholar
     

  • 197.

    Rasoulnia, P., Mousavi, S. M., Rastegar, S. O. & Azargoshasb, H. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods. Waste Manag. 52, 309–317 (2016).


    Google Scholar
     

  • 198.

    Ren, W.-X., Li, P.-J., Geng, Y. & Li, X.-J. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger. J. Hazard. Mater. 167, 164–169 (2009).


    Google Scholar
     

  • 199.

    Jadhav, U., Su, C. & Hocheng, H. Leaching of metals from printed circuit board powder by an Aspergillus niger culture supernatant and hydrogen peroxide. RSC Adv. 6, 43442–43452 (2016).


    Google Scholar
     

  • 200.

    Liang, X. & Gadd, G. M. Metal and metalloid biorecovery using fungi. Microb. Biotechnol. 10, 1199–1205 (2017).


    Google Scholar
     

  • 201.

    Deng, X. et al. Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J. Hazard. Mater. 233–234, 25–32 (2012).


    Google Scholar
     

  • 202.

    Deng, X., Yang, Z. & Chen, R. Study of characteristics on metabolism of Penicillium chrysogenum F1 during bioleaching of heavy metals from contaminated soil. Can. J. Microbiol. 65, 629–641 (2019).


    Google Scholar
     

  • 203.

    Zayed, A. M. & Terry, N. Chromium in the environment: Factors affecting biological remediation. Plant Soil 249, 139–156 (2003).


    Google Scholar
     

  • 204.

    Alessi, D. S. et al. Speciation and reactivity of uranium products formed during in situ bioremediation in a shallow alluvial aquifer. Environ. Sci. Technol. 48, 12842–12850 (2014).


    Google Scholar
     

  • 205.

    Bargar, J. R. et al. Uranium redox transition pathways in acetate-amended sediments. Proc. Natl Acad. Sci. USA 110, 4506–4511 (2013).


    Google Scholar
     

  • 206.

    Damian, G. E., Micle, V., Sur, I. M. & Chirilă Băbău, A. M. From environmental ethics to sustainable decision-making: assessment of potential ecological risk in soils around abandoned mining areas-case study “Larga de Sus mine” (Romania). J. Agric. Environ. Ethics 32, 27–49 (2019).


    Google Scholar
     

  • 207.

    Xie, Z. et al. Conservation opportunities on uncontested lands. Nat. Sustain. 3, 9–15 (2020).


    Google Scholar
     

  • 208.

    Favas, P. J. C., Pratas, J., Paul, M. S. & Prasad, M. N. V. in Phytomanagement of Polluted Sites (eds Pandey, V. C. & Bauddh, K.) 277–300 (Elsevier, 2019).

  • 209.

    Gadd, G. M. Heavy metal accumulation by bacteria and other microorganisms. Experientia 46, 834–840 (1990).


    Google Scholar
     

  • 210.

    Kasemodel, M. C., Sakamoto, I. K., Varesche, M. B. A. & Rodrigues, V. G. S. Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit. Sci. Total Environ. 675, 367–379 (2019).


    Google Scholar
     

  • 211.

    Nies, D. H. Heavy metal-resistant bacteria as extremophiles: Molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4, 77–82 (2000).


    Google Scholar
     

  • 212.

    Valls, M. & de Lorenzo, V. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 26, 327–338 (2002).


    Google Scholar
     

  • 213.

    Liang, Y. et al. Molecular characteristics, proton dissociation properties, and metal binding properties of soil organic matter: A theoretical study. Sci. Total Environ. 656, 521–530 (2019).


    Google Scholar
     

  • 214.

    Elghali, A. et al. The role of hardpan formation on the reactivity of sulfidic mine tailings: a case study at Joutel mine (Québec). Sci. Total Environ. 654, 118–128 (2019).


    Google Scholar
     

  • 215.

    Achal, V., Pan, X. & Zhang, D. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol. Eng. 37, 1601–1605 (2011).


    Google Scholar
     

  • 216.

    Wang, J. et al. Iron–manganese (oxyhydro)oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems. Environ. Sci. Technol. 53, 2500–2508 (2019).


    Google Scholar
     

  • 217.

    Chen, Y.-W., Yu, X. & Belzile, N. Arsenic speciation in surface waters and lake sediments in an abandoned mine site and field observations of arsenic eco-toxicity. J. Geochem. Explor. 205, 106349 (2019).


    Google Scholar
     

  • 218.

    Wilkin, R. T. Contaminant attenuation processes at mine sites. Mine Water Environ. 27, 251–258 (2008).


    Google Scholar
     

  • 219.

    Kumar, V. et al. Impact of tillage and crop establishment methods on crop yields, profitability and soil physical properties in rice–wheat system of Indo-Gangetic Plains of India. Soil Use Manag. 35, 303–313 (2019).


    Google Scholar
     

  • 220.

    Farhate, C. V. V. et al. Soil tillage and cover crop on soil CO2 emissions from sugarcane fields. Soil Use Manag. 35, 273–282 (2019).


    Google Scholar
     

  • 221.

    Mangalassery, S., Mooney, S. J., Sparkes, D. L., Fraser, W. T. & Sjögersten, S. Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils. Eur. J. Soil Biol. 68, 9–17 (2015).


    Google Scholar
     

  • 222.

    Lovley, D. R. & Coates, J. D. Bioremediation of metal contamination. Curr. Opin. Biotechnol. 8, 285–289 (1997).


    Google Scholar
     

  • 223.

    Thornton, S. F., Nicholls, H. C. G., Rolfe, S. A., Mallinson, H. E. H. & Spence, M. J. Biodegradation and fate of ethyl tert-butyl ether (ETBE) in soil and groundwater: a review. J. Hazard. Mater. 391, 122046 (2020).


    Google Scholar
     

  • 224.

    Ławniczak, Ł., Woźniak-Karczewska, M., Loibner, A. P., Heipieper, H. J. & Chrzanowski, Ł. Microbial degradation of hydrocarbons—basic principles for bioremediation: a review. Molecules 25, 856 (2020).


    Google Scholar
     

  • 225.

    Newsome, L., Morris, K. & Lloyd, J. R. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem. Geol. 363, 164–184 (2014).


    Google Scholar
     

  • 226.

    Donati, E. R., Sani, R. K., Goh, K. M. & Chan, K.-G. Editorial: recent advances in bioremediation/biodegradation by extreme microorganisms. Front. Microbiol. 10, 1851 (2019).


    Google Scholar
     

  • 227.

    Lebeau, T. in Bioaugmentation, Biostimulation and Biocontrol. Soil Biology Vol. 108 (eds Singh, A., Parmar, N. & Kuhad, R.) 129–186 (Springer, 2011).

  • 228.

    Young, C.-C., Rekha, P. D., Lai, W.-A. & Arun, A. B. Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnol. Bioeng. 95, 76–83 (2006).


    Google Scholar
     

  • 229.

    Bashan, Y., Hernandez, J. P., Leyva, L. A. & Bacilio, M. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol. Fertil. Soils 35, 359–368 (2002).


    Google Scholar
     

  • 230.

    van Elsas, J. D., Trevors, J. T., Rosado, A. S. & Nannipieri, P. Modern Soil Microbiology 3rd edn (CRC, 2019).

  • 231.

    Diep, P., Mahadevan, R. & Yakunin, A. F. Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front. Bioeng. Biotechnol. 6, 157 (2018).


    Google Scholar
     

  • 232.

    Kang, S. H. et al. Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl. Environ. Microbiol. 73, 6317–6320 (2007).


    Google Scholar
     

  • 233.

    Yadav, S. K. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr. J. Bot. 76, 167–179 (2010).


    Google Scholar
     

  • 234.

    Sneller, F. E. C. et al. Derivatization of phytochelatins from Silene vulgaris, induced upon exposure to arsenate and cadmium: comparison of derivatization with Ellman’s reagent and monobromobimane. J. Agric. Food Chem. 48, 4014–4019 (2000).


    Google Scholar
     

  • 235.

    Gupta, S. & Singh, D. in Advances in Environmental Biotechnology (eds Kumar, R., Sharma, A. & Ahluwalia, S.) 197–214 (Springer, 2017).

  • 236.

    Yergeau, E., Sanschagrin, S., Maynard, C., St-Arnaud, M. & Greer, C. W. Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J. 8, 344–358 (2014).


    Google Scholar
     

  • 237.

    Rajkumar, M., Sandhya, S., Prasad, M. N. V. & Freitas, H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 30, 1562–1574 (2012).


    Google Scholar
     

  • 238.

    Braud, A., Jézéquel, K., Bazot, S. & Lebeau, T. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74, 280–286 (2009).


    Google Scholar
     

  • 239.

    Plewniak, F., Crognale, S., Rossetti, S. & Bertin, P. N. A genomic outlook on bioremediation: the case of arsenic removal. Front. Microbiol. 9, 820 (2018).


    Google Scholar
     

  • 240.

    Mesa, J. et al. Moving closer towards restoration of contaminated estuaries: bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native Spartina maritima. J. Hazard. Mater. 300, 263–271 (2015).


    Google Scholar
     

  • 241.

    Li, D., Niu, Y. Y., Fan, M., Xu, D. L. & Xu, P. Focusing phenomenon caused by soil conductance heterogeneity in the electrokinetic remediation of chromium (VI)-contaminated soil. Sep. Purif. Technol. 120, 52–58 (2013).


    Google Scholar
     

  • 242.

    Liang, L. et al. Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives. Environ. Rev. 25, 269–281 (2017).


    Google Scholar
     

  • 243.

    Aboughalma, H., Bi, R. & Schlaak, M. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. J. Environ. Sci. Health A 43, 926–933 (2008).


    Google Scholar
     

  • 244.

    Burges, A., Alkorta, I., Epelde, L. & Garbisu, C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int. J. Phytoremediat. 20, 384–397 (2018).


    Google Scholar
     

  • 245.

    Conesa, H. M., Evangelou, M. W. H., Robinson, B. H. & Schulin, R. A critical view of current state of phytotechnologies to remediate soils: still a promising tool? Sci. World J. 2012, 173829 (2012).


    Google Scholar
     

  • 246.

    Robinson, B. H., Bañuelos, G., Conesa, H. M., Evangelou, M. W. H. & Schulin, R. The phytomanagement of trace elements in soil. Crit. Rev. Plant Sci. 28, 240–266 (2009).


    Google Scholar
     

  • 247.

    Evangelou, M. W. H., Papazoglou, E. G., Robinson, B. H. & Schulin, R. in Phytoremediation: Management of Environmental Contaminants Vol. 1 (eds Ansari, A. et al.) 115–132 (Springer, 2015).

  • 248.

    Hou, D. & Ok, Y. S. Soil pollution — speed up global mapping. Nature 566, 455–455 (2019).


    Google Scholar
     

  • 249.

    O’Connor, D. et al. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci. Total Environ. 619–620, 815–826 (2018).


    Google Scholar
     

  • 250.

    United Nations Environment Assembly of the United Nations Environment Programme. Implementation plan “Towards a pollution-free planet” (UNEP, 2019).

  • 251.

    Jiang, Y. et al. Field scale remediation of Cd and Pb contaminated paddy soil using three mulberry (Morus alba L.) cultivars. Ecol. Eng. 129, 38–44 (2019).


    Google Scholar
     

  • 252.

    Li, J. T., Liao, B., Dai, Z. Y., Zhu, R. & Shu, W. S. Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials. Chemosphere 76, 1233–1239 (2009).


    Google Scholar
     

  • 253.

    Mayerová, M. et al. Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops. Environ. Sci. Pollut. Res. 24, 14706–14716 (2017).


    Google Scholar
     

  • 254.

    van Slycken, S. et al. Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils. Int. J. Phytoremediat. 15, 677–689 (2013).


    Google Scholar
     

  • 255.

    Ma, J., Lei, E., Lei, M., Liu, Y. & Chen, T. Remediation of arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Chemosphere 194, 737–744 (2018).


    Google Scholar
     

  • 256.

    Meers, E. et al. The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78, 35–41 (2010).


    Google Scholar
     

  • 257.

    Favas, P. J. C., Pratas, J., Varun, M., D’Souza, R. & Paul, M. S. in Environmental Risk Assessment of Soil Contamination (ed. Hernandez Soriano, M. C.) 485–518 (InTech, 2014).

  • 258.

    Ahemad, M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab. J. Chem. 12, 1365–1377 (2019).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *