• 1.

    Arnsten AFT, Wang M, Paspalas CD. Dopamine’s actions in primate prefrontal cortex: challenges for treating cognitive disorders. Pharmacol Rev. 2015; 67:681–96.

  • 2.

    Cools R, D’Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry. 2011;69:e113–e125.

    Google Scholar

  • 3.

    Goldman-Rakic PS. The cortical dopamine system: role in memory and cognition. Adv Pharmacol. 1997;42:707–11.

    Google Scholar

  • 4.

    Arnsten AT, Plizska SR. Catecholamine influences on prefrontal cortical function: relevance to treatment of attention deficit hyperactivity disorder and related disorders. Pharmocological Biochem Behav. 2011;99:211–6.

    Google Scholar

  • 5.

    Prince J. Catecholamine dysfunction in attention-deficit/hyperactivity disorder an update. J Clin Psychopharmacol. 2008;28:39–45.

    Google Scholar

  • 6.

    Greely H, Campbell P, Sahakian B, Harris J, Kessler RC, Gazzaniga M, et al. Towards responsible use of cognitive-enhancing drugs by the healthy. Nature. 2008; 456:702–5.

  • 7.

    Husain M, Mehta MA. Cognitive enhancement by drugs in health and disease. Trends Cogn Sci. 2011;15:28–36.

    Google Scholar

  • 8.

    Schelle KJ, Olthof BMJ, Reintjes W, Bundt C, Gusman-Vermeer J, Vanmil ACCM. A survey of substance use for cognitive enhancement by university students in the Netherlands. Front Syst Neurosci. 2015;9:1–11.

    Google Scholar

  • 9.

    Elliott R, Sahakian BJ, Matthews K, Bannerjea A, Rimmer J, Robbins TW. Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology. 1997;131:196–206.

    Google Scholar

  • 10.

    Fallon SJ, van der Schaaf ME, ter Huurne N, Cools R. The neurocognitive cost of enhancing cognition with methylphenidate: improved distractor resistance but impaired updating. J Cogn Neurosci. 2017;29:652–63.

    Google Scholar

  • 11.

    Rogers RD, Blackshaw AJ, Middleton HC, Matthews K, Hawtin K, Crowley C, et al. Tryptophan depletion impairs stimulus-reward learning while methylphenidate disrupts attentional control in healthy young adults: Implications for the monoaminergic basis of impulsive behaviour. Psychopharmacology. 1999;146:482–91.

    Google Scholar

  • 12.

    Samanez-Larkin G, Buckholtz J. A thalamocorticostriatal dopamine network for psychostimulant- enhanced human cognitive flexibility. Biol Psychiatry. 2013;74:99–105.

    Google Scholar

  • 13.

    Spronk DB, van Wel JHP, Ramaekers JG, Verkes RJ. Characterizing the cognitive effects of cocaine: a comprehensive review. Neurosci Biobehav Rev. 2013;37:1838–59.

    Google Scholar

  • 14.

    Ter Huurne N, Fallon SJ, Van Schouwenburg M, Van Der Schaaf M, Buitelaar J, Jensen O, et al. Methylphenidate alters selective attention by amplifying salience. Psychopharmacology. 2015;232:4317–23.

    Google Scholar

  • 15.

    Repantis D, Schlattmann P, Laisney O, Heuser I. Modafinil and methylphenidate for neuroenhancement in healthy individuals: a systematic review. Pharmacol Res. 2010;62:187–206.

    Google Scholar

  • 16.

    Roehrs T, Papineau K, Rosenthal L, Roth T. Sleepiness and the reinforcing and subjective effects of methylphenidate. Exp Clin Psychopharmacol. 1999;7:145–50.

    Google Scholar

  • 17.

    Manohar SG, Chong TTJ, Apps MAJ, Batla A, Stamelou M, Jarman PR, et al. Reward pays the cost of noise reduction in motor and cognitive control. Curr Biol. 2015;25:1707–16.

    Google Scholar

  • 18.

    Mcguigan S, Zhou S, Brosnan B, Thyagarajan D, Bellgrove MA, Chong T-J. Dopamine restores cognitive motivation in Parkinson’ s disease. Brain. 2019;142:719–32.

  • 19.

    Cools R. The cost of dopamine for dynamic cognitive control. Curr Opin. Behav Sci. 2015;4:152–9.

    Google Scholar

  • 20.

    Froböse MI, Cools R. Chemical neuromodulation of cognitive control avoidance. Curr Opin Behav Sci. 2018;22:121–7.

    Google Scholar

  • 21.

    Clark CR, Geffen GM, Geffen LB. Role of monoamine pathways in attention and effort: Effects of clonidine and methylphenidate in normal adult humans. Psychopharmacology. 1986;90:35–39.

    Google Scholar

  • 22.

    Froböse MI, Swart JC, Cook JL, Geurts DEM, Den Ouden HEM, Cools R. Catecholaminergic modulation of the avoidance of cognitive control. J Exp Psychol Gen. 2018;147:1763–81.

    Google Scholar

  • 23.

    Wardle MC, Treadway MT, Mayo LM, Zald DH, de Wit H. Amping up effort: effects of d-amphetamine on human effort-based decision-making. J Neurosci. 2011;31:16597–602.

    Google Scholar

  • 24.

    Hosking JG, Floresco SB, Winstanley CA. Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks. Neuropsychopharmacology. 2015;40:1005–15.

    Google Scholar

  • 25.

    Egerton A, Demjaha A, McGuire P, Mehta MA, Howes OD. The test-retest reliability of 18F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic function. Neuroimage. 2010;50:524–31.

    Google Scholar

  • 26.

    Schabram I, Henkel K, Shali SM, Dietrich C, Schmaljohann J, Winz O, et al. Acute and sustained effects of methylphenidate on cognition and presynaptic dopamine metabolism: an [18F]FDOPA PET study. J Neurosci. 2014;34:14769–76.

    Google Scholar

  • 27.

    Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L. Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology. 1994;11:245–56.

    Google Scholar

  • 28.

    Mehta MA, Mcgowan SW, Lawrence AD, Aitken MRF, Montgomery AJ, Grasby PM. Systemic sulpiride modulates striatal blood flow: relationships to spatial working memory and planning. NeuroImage. 2003;20:1982–94.

  • 29.

    Westerink BHC, Kawahara Y, De Boer P, Geels C, De Vries JB, Wikström HV, et al. Antipsychotic drugs classified by their effects on the release of dopamine and noradrenaline in the prefrontal cortex and striatum. Eur J Pharmacol. 2001;412:127–38.

    Google Scholar

  • 30.

    Collins AGE, Frank MJ. Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol Rev. 2014;121:337–66.

    Google Scholar

  • 31.

    Westbrook A, van den Bosch R, Määttä JI, Hofmans L, Papadopetraki D, Cools R, et al. Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work. Science. 2020;367:1362–6.

    Google Scholar

  • 32.

    Cocker PJ, Hosking JG, Benoit J, Winstanley CA. Sensitivity to cognitive effort mediates psychostimulant effects on a novel rodent cost/benefit decision-making task. Neuropsychopharmacology. 2012;37:1825–37.

    Google Scholar

  • 33.

    Kurzban R, Duckworth A, Kable JW, Myers J. An opportunity cost model of subjective effort and task performance. Behav Brain Sci. 2013;36:661–79.

    Google Scholar

  • 34.

    Otto AR, Daw ND. The opportunity cost of time modulates cognitive effort. Neuropsychologia. 2019;123:92–105.

    Google Scholar

  • 35.

    Niv Y, Daw ND, Joel D, Dayan P. Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology. 2007;191:507–20.

    Google Scholar

  • 36.

    Niv Y. Cost, benefit, tonic, phasic: what do response rates tell us about dopamine and motivation? Ann N Y Acad Sci. 2007;1104:357–76.

    Google Scholar

  • 37.

    Grogan JP, Sandhu TR, Hu MT, Manohar SG. Dopamine promotes instrumental motivation, but reduces reward-related vigour. BioRxiv Neurosci. 2020;1–15.

  • 38.

    Zénon A, Devesse S, Olivier E. Dopamine manipulation affects response vigor independently of opportunity cost. J Neurosci. 2016;36:9516–25.

    Google Scholar

  • 39.

    Eisenegger C, Naef M, Linssen A, Clark L, Gandamaneni PK, Müller U, et al. Role of dopamine D2 receptors in human reinforcement learning. Neuropsychopharmacology. 2014;39:2366–75.

    Google Scholar

  • 40.

    Frank MJ, O’Reilly RC. A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci. 2006;120:497–517.

    Google Scholar

  • 41.

    Mehta MA, Montgomery AJ, Kitamura Y, Grasby PM. Dopamine D2 receptor occupancy levels of acute sulpiride challenges that produce working memory and learning impairments in healthy volunteers. Psychopharmacology. 2008;196:157–65.

    Google Scholar

  • 42.

    Helmy SA. Therapeutic drug monitoring and pharmacokinetic compartmental analysis of sulpiride double-peak absorption profile after oral administration to human volunteers. Biopharm Drug Dispos. 2013;34:288–301.

  • 43.

    Wiesel FA, Alfredsson G, Ehrnebo M, Sedvall G. The pharmacokinetics of intravenous and oral sulpiride in healthy human subjects. Eur J Clin Pharmacol. 1980;17:385–91.

    Google Scholar

  • 44.

    Kimko HC, Cross JT, Abernethy DR. Pharmacokinetics and clinical effectiveness of methylphenidate. Clin Pharmacokinet. 1999;37:457–70.

    Google Scholar

  • 45.

    Spencer TJ, Biederman J, Ciccone PE, Madras BK, Dougherty DD, Bonab AA, et al. PET study examining pharmacokinetics, detection and likeability, and dopamine transporter receptor occupancy of short- and long-acting oral methylphenidate. Am J Psychiatry. 2006;163:387–95.

    Google Scholar

  • 46.

    Wargin W, Patrick K, Kilts C, Gualtieri C, Ellington K, Mueller Ra, et al. Pharmacokinetics of methyiphenidate. J Pharmacol Exp Ther. 1983;226:382–6.

    Google Scholar

  • 47.

    Cools R. The costs and benefits of brain dopamine for cognitive control. Wiley Interdiscip Rev Cogn Sci. 2016;7:317–29.

    Google Scholar

  • 48.

    Papadopetraki D, Froböse MI, Westbrook A, Zandbelt BB, Cools R. Quantifying the cost of cognitive stability and flexibility. (2019). Accessed 03 Sep 2019.

  • 49.

    Rieskamp J. The probabilistic nature of preferential choice. J Exp Psychol Learn Mem Cogn. 2008;34:1446–65.

    Google Scholar

  • 50.

    Westbrook A, Kester D, Braver TS. What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. PLoS ONE. 2013;8:1–8.

    Google Scholar

  • 51.

    Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1983;5:584–90.

    Google Scholar

  • 52.

    Piray P.Ouden HEMDen, Schaaf ME Van Der, Toni I, Cools R. Dopaminergic modulation of the functional ventrodorsal architecture of the human striatum. Cereb Cortex. 2017;27:485–95.

  • 53.

    Singmann H, Bolker B, Westfall J, Aust F, Ben-Shachar MS. afex: analysis of factorial experiments. Preprint at (2020). Accessed 28 March 2020.

  • 54.

    Buchanan EM, Gillenwaters A, Scofield JE, Valentine KD MOTE: Measure of the Effect: Package to assist in effect size calculations and their confidence intervals. (2019). Accessed 10 April 2019.

  • 55.

    Aarts E, van Holstein M, Cools R. Striatal dopamine and the interface between motivation and cognition. Front Psychol. 2011;2:163.

    Google Scholar

  • 56.

    Van HolstRJ, Sescousse G, Janssen LK, Janssen M, Berry AS, Jagust WJ, et al. Increased striatal dopamine synthesis capacity in gambling addiction. Biol Psychiatry. 2018;83:1036–43.

    Google Scholar

  • 57.

    Bloomfield MAP, Morgan CJA, Egerton A, Kapur S, Curran HV, Howes OD. Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol Psychiatry. 2014;75:470–8.

    Google Scholar

  • 58.

    Heinz A, Siessmeier T, Wrase J, Buchholz HG, Gründer G, Kumakura Y, et al. Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry. 2005;162:1515–20.

    Google Scholar

  • 59.

    Rademacher L, Prinz S, Winz O, Henkel K, Dietrich CA, Schmaljohann J, et al. Effects of smoking cessation on presynaptic dopamine function of addicted male smokers. Biol Psychiatry. 2016;80:198–206.

    Google Scholar

  • 60.

    Tiihonen J, Vilkman H, Räsänen P, Ryynänen OP, Hakko H, Bergman J, et al. Striatal presynaptic dopamine function in type 1 alcoholics measured with positron emission tomography. Mol Psychiatry. 1998;4:156–61.

    Google Scholar

  • 61.

    Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM. Dopa decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J Neurosci. 1998;18:5901–5907.

    Google Scholar

  • 62.

    Ludolph AG, Kassubek J, Schmeck K, Glaser C, Wunderlich A, Buck AK, et al. Dopaminergic dysfunction in attention deficit hyperactivity disorder (ADHD), differences between pharmacologically treated and never treated young adults: a 3,4-dihdroxy-6-[18F]fluorophenyl-l-alanine PET study. Neuroimage. 2008;41:718–27.

    Google Scholar

  • 63.

    Kuczenski R, Segal DS. Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J Pharmacol Exp Ther. 2001;296:876–83.

    Google Scholar

  • 64.

    Scheel-Krüger J. Comparative studies of various amphetamine analogues demonstrating different interactions with the metabolism of the catecholamines in the brain. Eur J Pharmacol. 1971;14:47–59.

    Google Scholar

  • 65.

    Van Der Schaaf ME, Van Schouwenburg MR, Geurts DEM, Schellekens AFA, Buitelaar JK, Verkes RJ, et al. Establishing the dopamine dependency of human striatal signals during reward and punishment reversal learning. Cereb Cortex. 2014;24:633–42.

    Google Scholar

  • 66.

    Aston-Jones G, Cohen JD. Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol. 2005;493:99–110.

    Google Scholar

  • 67.

    Gilzenrat MS, Nieuwenhuis S, Jepma M, Cohen JD. Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cogn Affect Behav Neurosci. 2010;10:252–69.

    Google Scholar

  • 68.

    Hopstaken JF, van der Linden D, Bakker AB, Kompier MAJ. The window of my eyes: task disengagement and mental fatigue covary with pupil dynamics. Biol Psychol. 2015;110:100–6.

    Google Scholar

  • 69.

    Rajkowski J, Kubiak P, Aston-Jones G. Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Soc Neurosci Abstr. 1993;19:974.

    Google Scholar

  • 70.

    Van den Brink RL, Murphy PR, Nieuwenhuis S. Pupil diameter tracks lapses of attention. PLoS ONE. 2016,11:e0165274.

  • 71.

    Chavanon M-L, Wacker J, Stemmler G. Paradoxical dopaminergic drug effects in extraversion: dose- and time-dependent effects of sulpiride on EEG theta activity. Front Hum Neurosci. 2013;7:117.

    Google Scholar

  • 72.

    Serra G, Forgione A, D’Aquila PS, Collu M, Fratta W, Gessa GL. Possible mechanisms of antidepressant effect of L-sulpiride. Clin Neuropharmacol. 1990;13:S76–S83.

    Google Scholar

  • 73.

    Del Campo N, Fryer TD, Hong YT, Smith R, Brichard L, Acosta-Cabronero J, et al. A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: implications for ADHD and its treatment. Brain. 2013;136:3252–70.

    Google Scholar

  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *