CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    FAO. Fishery and Aquaculture Statistics. Global aquaculture production 1950–2017 (FishstatJ). In: FAO Fisheries and Aquaculture Department. Rome. Updated 2020. www.fao.org/fishery/statistics/software/fishstatj/en (2020).

  • 2.

    Wijsman, J. W. M., Troost, K., Fang, J. & Roncarati, A. Global Production of marine bivalves. Trends and challenges. In Goods and Services of Marine Bivalves (eds. Smaal, A. C., Ferreira, J. G., Grant, J., Petersen, J. K. & Strand, Ø.) 7–26 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-96776-9_2.

  • 3.

    Merrit, D. The year-round oyster hatchery at horn point. Maryl. Aquafarmer 2003, 16 (2003).


    Google Scholar
     

  • 4.

    Syvret, M., James, J., Bayes, J. & Woolmer, A. Closing the circle report II: Development of a generic shellfish hatchery design with associated spatting ponds. Seafish Rep. SR705, 57 (2017).


    Google Scholar
     

  • 5.

    K. Wallace, R., Rikard, F. & C. Howe, J. Optimum Size for Planting Hatchery Produced Oyster Seed: Final Technical Report. (Ocean Springs, MS: MississippiAlabama Sea Grant Consortium, 2002).

  • 6.

    Willer, D. F. & Aldridge, D. C. Microencapsulated diets to improve bivalve shellfish aquaculture for global food security. Glob. Food Sec. 23, 64–73 (2019).

    Article 

    Google Scholar
     

  • 7.

    Knauer, J. & Southgate, P. C. A review of the nutritional requirements of bivalves and development of alternative and artificial diets for bivalve aquaculture. Rev. Fish. Sci. 7, 241–280 (1999).

    Article 
    CAS 

    Google Scholar
     

  • 8.

    Willer, D. & Aldridge, D. C. Microencapsulated diets to improve bivalve shellfish aquaculture. R. Soc. Open Sci. 4, 171142 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 9.

    Helm, M. & Bourne, N. The Hatchery Culture of Bivalves: A Practical Manual. FAO Fisheries, Vol. 471 (2004).

  • 10.

    Borowitzka, M. A. Microalgae for aquaculture: Opportunities and constraints. J. Appl. Phycol. 9, 393 (1997).

    Article 

    Google Scholar
     

  • 11.

    Willer, D. F. & Aldridge, D. C. Microencapsulated diets to improve growth and survivorship in juvenile European flat oysters (Ostrea edulis). Aquaculture 505, 256–262 (2019).

    Article 

    Google Scholar
     

  • 12.

    Abayomi, O., Tampier, M. & Bibeau, E. Microalgae technologies & processes for biofuels / bioenergy production in British Columbia: Current technology, suitability & barriers to implementation. Seed Sci. (2009).

  • 13.

    Gui, Y., Kaspar, H. F., Zamora, L. N., Dunphy, B. J. & Jeffs, A. G. Capture efficiency of artificial food particles of post-settlement juveniles of the Greenshell mussel, Perna canaliculus. Aquac. Res. 464, 1–7 (2016).

    Article 

    Google Scholar
     

  • 14.

    Gui, Y., Zamora, L., Dunphy, B. J. & Jeffs, A. G. Evaluation of the formulated diet MySpat for feeding hatchery-reared spat of the green-lipped mussel, Perna canaliculus (Gmelin, 1791). Aquac. Res. 47, 3907–3912 (2016).

    Article 

    Google Scholar
     

  • 15.

    Santos, L. & Ramos, F. Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. Int. J. Antimicrob. Agents 52, 135–143 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 16.

    Luzardo-Alvarez, A., Otero-Espinar, F. J. & Blanco-Méndez, J. Microencapsulation of diets and vaccines for cultured fishes, crustaceans and bivalve mollusks. J. Drug Deliv. Sci. Technol. 20, 277–288 (2010).

    Article 
    CAS 

    Google Scholar
     

  • 17.

    FAO Committee on World Food Security (CFS). Sustainable Fisheries and Aquaculture for Food Security and Nutrition Policy. (2014).

  • 18.

    European Commission DG Environment. Sustainable Aquaculture: Future Brief 11. Sci. Environ. Policy (2015).

  • 19.

    Waite, R. et al. Improving productivity and environmental performance of aquaculture: Creating a sustainable food future. World Resour. Inst. 6, 1–60 (2014).


    Google Scholar
     

  • 20.

    Ramos-Vega, A., Rosales-Mendoza, S., Bañuelos-Hernández, B. & Angulo, C. Prospects on the use of Schizochytrium sp. to develop oral vaccines. Front. Microbiol. 9, 2506 (2018).

    Article 

    Google Scholar
     

  • 21.

    Mo, W. Y., Man, Y. B. & Wong, M. H. Use of food waste, fish waste and food processing waste for China’s aquaculture industry: Needs and challenge. Sci. Total Environ. 613–614, 635–643 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 22.

    DSM. DHA Gold: Sustainable algae derived DHA omega-3. DSM Nutritional Products Ltd 2016. https://www.dsm.com/markets/anh/en_US/products/products-solutions/products-solutions-dhagold.html (2019).

  • 23.

    Becker, E. W. Microalgae for aquaculture: Nutritional aspects. Handb. Microalgal Cult. Appl. Phycol. Biotechnol. 2, 671–691 (2013).

    Article 

    Google Scholar
     

  • 24.

    Aldridge, D. C., Elliott, P. & Moggridge, G. D. Microencapsulated BioBullets for the control of biofouling zebra mussels. Environ. Sci. Technol. 40, 975–979 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 25.

    Langdon, C. Microparticle types for delivering nutrients to marine fish larvae. Aquaculture 227, 259–275 (2003).

    Article 
    CAS 

    Google Scholar
     

  • 26.

    Grant, J. et al. A multidisciplinary approach to evaluating impacts of shellfish aquaculture on benthic communities. Estuaries 18, 124–144 (1995).

    Article 
    CAS 

    Google Scholar
     

  • 27.

    Reijnders, L. & Huijbregts, M. A. J. Palm oil and the emission of carbon-based greenhouse gases. J. Clean. Prod. 16, 477–482 (2008).

    Article 

    Google Scholar
     

  • 28.

    Azari, A., Noorpoor, A. R. & Bozorg-Haddad, O. Carbon footprint analyses of microalgae cultivation systems under autotrophic and heterotrophic conditions. Int. J. Environ. Sci. Technol. 16, 6671–6684 (2019).

    Article 
    CAS 

    Google Scholar
     

  • 29.

    Myers, J. A. & Boisvert, R. N. The economics of producing algae and bivalve seed in hatcheries. Aquaculture 86, 163–179 (1990).

    Article 

    Google Scholar
     

  • 30.

    Li, H. et al. Determination of carbon footprint using LCA method for straight used cooking oil as a fuel in HGVs. SAE Int. J. Fuels Lubr. 7, 623–630 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 31.

    Anjos, C. et al. Broodstock conditioning of the Portuguese oyster (Crassostrea angulata, Lamarck, 1819): Influence of different diets. Aquac. Res. 48, 3859–3878 (2017).

    Article 

    Google Scholar
     

  • 32.

    Martínez-Pita, I., Sánchez-Lazo, C. & García, F. J. Influence of microalga lipid composition on the sexual maturation of Mytilus galloprovincialis: A hatchery study. Aquac. Nutr. 22, 202–216 (2016).

    Article 
    CAS 

    Google Scholar
     

  • 33.

    Hendriks, I. E., Van Duren, L. A. & Herman, P. M. J. Effect of dietary polyunsaturated fatty acids on reproductive output and larval growth of bivalves. J. Exp. Mar. Biol. Ecol. 296, 199–213 (2003).

    Article 
    CAS 

    Google Scholar
     

  • 34.

    Utting, S. D. & Millican, P. F. The role of diet in hatchery conditioning of Pecten maximus L.: A review. Aquaculture 165, 167–178 (1998).

    Article 
    CAS 

    Google Scholar
     

  • 35.

    Waters, C. G., Lindsay, S. & Costello, M. J. Factors relevant to pre-veliger nutrition of Tridacnidae giant clams. Rev. Aquac. 8, 3–17 (2016).

    Article 

    Google Scholar
     

  • 36.

    Kabeya, N. et al. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci. Adv. 4, eaar6849 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 37.

    Berthelin, C., Kellner, K. & Mathieu, M. Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (West Coast of France). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 125, 359–369 (2000).

    Article 
    CAS 

    Google Scholar
     

  • 38.

    González-Araya, R., Lebrun, L., Quéré, C. & Robert, R. The selection of an ideal diet for Ostrea edulis (L.) broodstock conditioning (part B). Aquaculture 362–363, 55–66 (2012).

    Article 
    CAS 

    Google Scholar
     

  • 39.

    Pruden, A. et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ. Health Perspect. 121, 878–885 (2013).

    Article 

    Google Scholar
     

  • 40.

    Beecham, J. A Literature review on particle assimilation by molluscs and crustaceans. Cefas C2706, 1–18 (2008).


    Google Scholar
     

  • 41.

    Olivares-Bañuelos, T. How important it is to produce seeds for the aquaculture of bivalve molluscs?. Oceanogr. Fish. Open access J. 8, 1–2 (2018).


    Google Scholar
     

  • 42.

    FAO. The State of World Fisheries and Aquaculture 2018. Contributing to Food Security and Nutrition for all. Rome, Vol. 200, 211 (2018).

  • 43.

    Furse, S. & Koulman, A. The lipid and glyceride profiles of infant formula differ by manufacturer, region and date sold. Nutrients 11(5), 1122. https://doi.org/10.3390/nu11051122 (2019).

    Article 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 44.

    Furse, S.et al. A high-throughput platform for detailed lipidomic analysis of a range of mouse and human tissues. Anal. Bioanal. Chem. https://doi.org/10.1007/s00216-020-02511-0 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Furse, S. et al. Evidence that maternal lipids influence their infant’s lipid profile through breast milk. Under Rev. EJCN. (2019).

  • 46.

    Furse, S., Eriksen, K., Moore, S. & Koulman, A. Identification of candidate molecular biomarkers for growth faltering in infants at 12w. In review (2020).

  • 47.

    Furse, S., Snowden, S. G., Olga L. et al. Evidence from 3-month-old infants shows that a combination of postnatal feeding and exposures in utero shape lipid
    metabolism. Sci. Rep. 9(1), 14321. https://doi.org/10.1038/s41598-019-50693-0 (2019).

    ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 48.

    Prentice, P. et al. Lipidomic analyses, breast- and formula-feeding, and growth in infants. J. Pediatr. 166, 276–81.e6 (2015).

    Article 
    CAS 

    Google Scholar
     

  • 49.

    Acharjee, A. et al. The translation of lipid profiles to nutritional biomarkers in the study of infant metabolism. Metabolomics 13, 25 (2017).

    MathSciNet 
    Article 
    CAS 

    Google Scholar
     

  • 50.

    Koulman, A. et al. The development and validation of a fast and robust dried blood spot based lipid profiling method to study infant metabolism. Metabolomics 10, 1018–1025 (2014).

    Article 
    CAS 

    Google Scholar
     

  • 51.

    Harshfield, E. L. et al. An unbiased lipid phenotyping approach to study the genetic determinants of lipids and their association with coronary heart disease risk factors. J. Proteome Res. https://doi.org/10.1021/acs.jproteome.8b00786 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Gillis, J. A., Alsema, E. C. & Criswell, K. E. Trunk neural crest origin of dermal denticles in a cartilaginous fish. Proc. Natl. Acad. Sci. 114, 201713827 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 53.

    Chong, J. et al. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–W494 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 54.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, Vienna, 2018).

  • 55.

    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    MathSciNet 
    MATH 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *