CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    Collins, D. S., Pinnock, I., Toya, Y., Shumila, V. & Trifu, C. I. Seismic event location and source mechanism accounting for complex block geology and voids. 48th US Rock Mech./Geomech. Symp. 2014(1), 63–69 (2014).


    Google Scholar
     

  • 2.

    Zhang, H., Thurber, C. & Rowe, C. Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bull. Seismol. Soc. Am. 93, 1904–1912 (2003).

    Article 

    Google Scholar
     

  • 3.

    Peng, P. & Wang, L. Targeted location of microseismic events based on a 3D heterogeneous velocity model in underground mining. PLoS ONE 14, e0212881 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    Ma, J., Zhao, G., Dong, L., Chen, G. & Zhang, C. A comparison of mine seismic discriminators based on features of source parameters to waveform characteristics. Shock Vib. 2015, 1–10 (2015).


    Google Scholar
     

  • 5.

    Vallejos, J. A. & Estay, R. A. Seismic parameters of mining-induced aftershock sequences for re-entry protocol development. Pure Appl. Geophys. 175, 793–811 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Peng, P. & Wang, L. 3DMRT: a computer package for 3D model-based seismic wave propagation. Seismol. Res. Lett. 90, 2039–2045 (2019).


    Google Scholar
     

  • 7.

    Ma, T. H., Tang, C. A., Tang, L. X., Zhang, W. D. & Wang, L. Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station. Tunn. Undergr. Sp. Technol. 49, 345–368 (2015).

    Article 

    Google Scholar
     

  • 8.

    Dou, L., Cai, W., Cao, A. & Guo, W. Comprehensive early warning of rock burst utilizing microseismic multi-parameter indices. Int. J. Min. Sci. Technol. 28, 767–774 (2018).

    Article 

    Google Scholar
     

  • 9.

    Vallejos, J. A., Delonca, A. & Perez, E. Three-dimensional effect of stresses in open stope mine design. Int. J. Min. Reclam. Environ. 32, 355–374 (2018).

    Article 

    Google Scholar
     

  • 10.

    Peng, P., He, Z. & Wang, L. Automatic classification of microseismic signals based on MFCC and GMM-HMM in underground mines. Shock Vib. 2019, 1–9 (2019).


    Google Scholar
     

  • 11.

    Mousavi, S. M., Zhu, W., Ellsworth, W. & Beroza, G. Unsupervised clustering of seismic signals using deep convolutional autoencoders. IEEE Geosci. Remote Sens. Lett. https://doi.org/10.1109/lgrs.2019.2909218 (2019).

    Article 

    Google Scholar
     

  • 12.

    Scarpetta, S. et al. Automatic classification of seismic signals at Mt. Vesuvius volcano, Italy, using neural networks. Bull. Seismol. Soc. Am. 95, 185–196 (2005).

    Article 

    Google Scholar
     

  • 13.

    Langer, H., Falsaperla, S., Powell, T. & Thompson, G. Automatic classification and a-posteriori analysis of seismic event identification at Soufrière Hills volcano, Montserrat. J. Volcanol. Geotherm. Res. 153, 1–10 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Esposito, A. M. et al. Automatic discrimination among landslide, explosion-quake, and microtremor seismic signals at Stromboli volcano using neural networks. Bull. Seismol. Soc. Am. 96, 1230–1240 (2006).

    Article 

    Google Scholar
     

  • 15.

    Curilem, G., Vergara, J., Fuentealba, G., Acuña, G. & Chacón, M. Classification of seismic signals at Villarrica volcano (Chile) using neural networks and genetic algorithms. J. Volcanol. Geotherm. Res. 180, 1–8 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    Malovichko, D. Discrimination of blasts in mine seismology. Deep Min. 161–171 (2012).

  • 17.

    Vallejos, J. A. & McKinnon, S. D. Logistic regression and neural network classification of seismic records. Int. J. Rock Mech. Min. Sci. 62, 86–95 (2013).

    Article 

    Google Scholar
     

  • 18.

    Hammer, C., Ohrnberger, M. & Fäh, D. Classifying seismic waveforms from scratch: a case study in the alpine environment. Geophys. J. Int. 192, 425–439 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Dong, L., Wesseloo, J., Potvin, Y. & Li, X. Discrimination of mine seismic events and blasts using the Fisher classifier, naive bayesian classifier and logistic regression. Rock Mech. Rock Eng. 49, 183–211 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Dong, L., Wesseloo, J., Potvin, Y. & Li, X. Discriminant models of blasts and seismic events in mine seismology. Int. J. Rock Mech. Min. Sci. 86, 282–291 (2016).

    Article 

    Google Scholar
     

  • 21.

    Shang, X., Li, X., Morales-Esteban, A. & Chen, G. Improving microseismic event and quarry blast classification using Artificial Neural Networks based on Principal Component Analysis. Soil Dyn. Earthq. Eng. 99, 142–149 (2017).

    Article 

    Google Scholar
     

  • 22.

    Kuyuk, H. S. & Susumu, O. Real-time classification of earthquake using deep learning. Proc. Comput. Sci. 140, 298–305 (2018).

    Article 

    Google Scholar
     

  • 23.

    Titos, M., Bueno, A., Garcia, L. & Benitez, C. A deep neural networks approach to automatic recognition systems for volcano-seismic events. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 1533–1544 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Lin, B., Wei, X. & Junjie, Z. Automatic recognition and classification of multi-channel microseismic waveform based on DCNN and SVM. Comput. Geosci. 123, 111–120 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Mousavi, S. M., Zhu, W., Sheng, Y. & Beroza, G. C. CRED: a deep residual network of convolutional and recurrent units for earthquake signal detection. Sci. Rep. 9, 1–4 (2019).

    Article 

    Google Scholar
     

  • 26.

    Cireşan, D. C., Meier, U., Gambardella, L. M. & Schmidhuber, J. Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 22, 3207–3220 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Yann, L. & Yoshua, B. Convolutional networks for images, speech, and time-series. Handb. Brain Theory Neural Netw. 4, 2571–2575 (1995).


    Google Scholar
     

  • 28.

    Mele, B. & Altarelli, G. Lepton spectra as a measure of b quark polarization at LEP. Phys. Lett. B 299, 345–350 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Mousavi, S.M., Zhu, W. & Beroza, G.C. Automatic Seismic Denoising Method Based on Deep Neural Networks. AGU Fall Meeting Abstract (2018)

  • 30.

    Sabour, S., Frosst, N. & Hinton, G. E. Dynamic routing between capsules. Adv. Neural Inf. Process. Syst. 2017, 3857–3867 (2017).


    Google Scholar
     

  • 31.

    He, Z., Peng, P., Wang, L. & Jiang, Y. PickCapsNet: capsule network for automatic p-wave arrival picking. IEEE Geosci. Remote Sens. Lett. https://doi.org/10.1109/lgrs.2020.2983196 (2020).

    Article 

    Google Scholar
     

  • 32.

    Lukic, V. et al. Morphological classification of radio galaxies: capsule networks versus convolutional neural networks. Mon. Not. R. Astron. Soc. 487, 1729–1744 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Paoletti, M. E. et al. Capsule networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57, 2145–2160 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Palvanov, A. & Cho, Y. I. Comparisons of deep learning algorithms for mnist in real-time environment. Int. J. Fuzzy Log. Intell. Syst. 18, 126–134 (2018).

    Article 

    Google Scholar
     

  • 35.

    Deng, F. et al. Hyperspectral image classification with capsule network using limited training samples. Sensors (Switzerland) 18, 3153 (2018).

    Article 

    Google Scholar
     

  • 36.

    Peng, P., He, Z., Wang, L. & Jiang, Y. Automatic classification of microseismic records in underground mining: a deep learning approach. IEEE Access 8, 17863–17876 (2020).

    Article 

    Google Scholar
     

  • 37.

    Bachu, R. G., Kopparthi, S., Adapa, B. & Barkana, B. D. Separation of voiced and unvoiced using zero crossing rate and energy of the speech signal. Adv. Tech. Comput. Sci. Softw. Eng. https://doi.org/10.1007/978-90-481-3660-5_47 (2010).

    Article 

    Google Scholar
     

  • 38.

    Yu, Y., Yu, D. & Junsheng, C. A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294, 269–277 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Lartillot, O. & Toiviainen, P. A matlab toolbox for musical feature extraction from audio. Int. Conf. Digit. Audio 1–8 (2007).

  • 40.

    Wu, B., Horner, A. & Lee, C. Musical timbre and emotion: The identification of salient timbral features in sustained musical instrument tones equalized in attack time and spectral centroid. In Proceeding—40th International Computer Music Conference ICMC 2014 11th Sound and Music Computing Conference SMC 2014—Music Technology Meets Philosophy: From Digital Echos to Virtual Ethos 928–934 (2014).

  • 41.

    Mawadda Warohma, A., Kurniasari, P., Dwijayanti, S., Irmawan & Yudho Suprapto, B. Identification of Regional Dialects Using Mel Frequency Cepstral Coefficients (MFCCs) and Neural Network. In Proceedings—2018 International Seminar on Application for Technology of Information and Communication, iSemantic 2018 522–527 (2018). https://doi.org/10.1109/ISEMANTIC.2018.8549731

  • 42.

    Jiang, W., Liu, P. & Wen, F. Speech magnitude spectrum reconstruction from mfccs using deep neural network. Chin. J. Electron. 27, 393–398 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Sun, X. Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio. in ICASSP. In IEEE International Conference on Acoustics, Speech and Signal Processing—Proceedings 1, 333–336 (IEEE, 2002).

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *