[ad_1]
Collins, D. S., Pinnock, I., Toya, Y., Shumila, V. & Trifu, C. I. Seismic event location and source mechanism accounting for complex block geology and voids. 48th US Rock Mech./Geomech. Symp. 2014(1), 63–69 (2014).
Zhang, H., Thurber, C. & Rowe, C. Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bull. Seismol. Soc. Am. 93, 1904–1912 (2003).
Peng, P. & Wang, L. Targeted location of microseismic events based on a 3D heterogeneous velocity model in underground mining. PLoS ONE 14, e0212881 (2019).
Ma, J., Zhao, G., Dong, L., Chen, G. & Zhang, C. A comparison of mine seismic discriminators based on features of source parameters to waveform characteristics. Shock Vib. 2015, 1–10 (2015).
Vallejos, J. A. & Estay, R. A. Seismic parameters of mining-induced aftershock sequences for re-entry protocol development. Pure Appl. Geophys. 175, 793–811 (2018).
Peng, P. & Wang, L. 3DMRT: a computer package for 3D model-based seismic wave propagation. Seismol. Res. Lett. 90, 2039–2045 (2019).
Ma, T. H., Tang, C. A., Tang, L. X., Zhang, W. D. & Wang, L. Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station. Tunn. Undergr. Sp. Technol. 49, 345–368 (2015).
Dou, L., Cai, W., Cao, A. & Guo, W. Comprehensive early warning of rock burst utilizing microseismic multi-parameter indices. Int. J. Min. Sci. Technol. 28, 767–774 (2018).
Vallejos, J. A., Delonca, A. & Perez, E. Three-dimensional effect of stresses in open stope mine design. Int. J. Min. Reclam. Environ. 32, 355–374 (2018).
Peng, P., He, Z. & Wang, L. Automatic classification of microseismic signals based on MFCC and GMM-HMM in underground mines. Shock Vib. 2019, 1–9 (2019).
Mousavi, S. M., Zhu, W., Ellsworth, W. & Beroza, G. Unsupervised clustering of seismic signals using deep convolutional autoencoders. IEEE Geosci. Remote Sens. Lett. https://doi.org/10.1109/lgrs.2019.2909218 (2019).
Scarpetta, S. et al. Automatic classification of seismic signals at Mt. Vesuvius volcano, Italy, using neural networks. Bull. Seismol. Soc. Am. 95, 185–196 (2005).
Langer, H., Falsaperla, S., Powell, T. & Thompson, G. Automatic classification and a-posteriori analysis of seismic event identification at Soufrière Hills volcano, Montserrat. J. Volcanol. Geotherm. Res. 153, 1–10 (2006).
Esposito, A. M. et al. Automatic discrimination among landslide, explosion-quake, and microtremor seismic signals at Stromboli volcano using neural networks. Bull. Seismol. Soc. Am. 96, 1230–1240 (2006).
Curilem, G., Vergara, J., Fuentealba, G., Acuña, G. & Chacón, M. Classification of seismic signals at Villarrica volcano (Chile) using neural networks and genetic algorithms. J. Volcanol. Geotherm. Res. 180, 1–8 (2008).
Malovichko, D. Discrimination of blasts in mine seismology. Deep Min. 161–171 (2012).
Vallejos, J. A. & McKinnon, S. D. Logistic regression and neural network classification of seismic records. Int. J. Rock Mech. Min. Sci. 62, 86–95 (2013).
Hammer, C., Ohrnberger, M. & Fäh, D. Classifying seismic waveforms from scratch: a case study in the alpine environment. Geophys. J. Int. 192, 425–439 (2013).
Dong, L., Wesseloo, J., Potvin, Y. & Li, X. Discrimination of mine seismic events and blasts using the Fisher classifier, naive bayesian classifier and logistic regression. Rock Mech. Rock Eng. 49, 183–211 (2016).
Dong, L., Wesseloo, J., Potvin, Y. & Li, X. Discriminant models of blasts and seismic events in mine seismology. Int. J. Rock Mech. Min. Sci. 86, 282–291 (2016).
Shang, X., Li, X., Morales-Esteban, A. & Chen, G. Improving microseismic event and quarry blast classification using Artificial Neural Networks based on Principal Component Analysis. Soil Dyn. Earthq. Eng. 99, 142–149 (2017).
Kuyuk, H. S. & Susumu, O. Real-time classification of earthquake using deep learning. Proc. Comput. Sci. 140, 298–305 (2018).
Titos, M., Bueno, A., Garcia, L. & Benitez, C. A deep neural networks approach to automatic recognition systems for volcano-seismic events. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 1533–1544 (2018).
Lin, B., Wei, X. & Junjie, Z. Automatic recognition and classification of multi-channel microseismic waveform based on DCNN and SVM. Comput. Geosci. 123, 111–120 (2019).
Mousavi, S. M., Zhu, W., Sheng, Y. & Beroza, G. C. CRED: a deep residual network of convolutional and recurrent units for earthquake signal detection. Sci. Rep. 9, 1–4 (2019).
Cireşan, D. C., Meier, U., Gambardella, L. M. & Schmidhuber, J. Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 22, 3207–3220 (2010).
Yann, L. & Yoshua, B. Convolutional networks for images, speech, and time-series. Handb. Brain Theory Neural Netw. 4, 2571–2575 (1995).
Mele, B. & Altarelli, G. Lepton spectra as a measure of b quark polarization at LEP. Phys. Lett. B 299, 345–350 (1993).
Mousavi, S.M., Zhu, W. & Beroza, G.C. Automatic Seismic Denoising Method Based on Deep Neural Networks. AGU Fall Meeting Abstract (2018)
Sabour, S., Frosst, N. & Hinton, G. E. Dynamic routing between capsules. Adv. Neural Inf. Process. Syst. 2017, 3857–3867 (2017).
He, Z., Peng, P., Wang, L. & Jiang, Y. PickCapsNet: capsule network for automatic p-wave arrival picking. IEEE Geosci. Remote Sens. Lett. https://doi.org/10.1109/lgrs.2020.2983196 (2020).
Lukic, V. et al. Morphological classification of radio galaxies: capsule networks versus convolutional neural networks. Mon. Not. R. Astron. Soc. 487, 1729–1744 (2019).
Paoletti, M. E. et al. Capsule networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57, 2145–2160 (2019).
Palvanov, A. & Cho, Y. I. Comparisons of deep learning algorithms for mnist in real-time environment. Int. J. Fuzzy Log. Intell. Syst. 18, 126–134 (2018).
Deng, F. et al. Hyperspectral image classification with capsule network using limited training samples. Sensors (Switzerland) 18, 3153 (2018).
Peng, P., He, Z., Wang, L. & Jiang, Y. Automatic classification of microseismic records in underground mining: a deep learning approach. IEEE Access 8, 17863–17876 (2020).
Bachu, R. G., Kopparthi, S., Adapa, B. & Barkana, B. D. Separation of voiced and unvoiced using zero crossing rate and energy of the speech signal. Adv. Tech. Comput. Sci. Softw. Eng. https://doi.org/10.1007/978-90-481-3660-5_47 (2010).
Yu, Y., Yu, D. & Junsheng, C. A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294, 269–277 (2006).
Lartillot, O. & Toiviainen, P. A matlab toolbox for musical feature extraction from audio. Int. Conf. Digit. Audio 1–8 (2007).
Wu, B., Horner, A. & Lee, C. Musical timbre and emotion: The identification of salient timbral features in sustained musical instrument tones equalized in attack time and spectral centroid. In Proceeding—40th International Computer Music Conference ICMC 2014 11th Sound and Music Computing Conference SMC 2014—Music Technology Meets Philosophy: From Digital Echos to Virtual Ethos 928–934 (2014).
Mawadda Warohma, A., Kurniasari, P., Dwijayanti, S., Irmawan & Yudho Suprapto, B. Identification of Regional Dialects Using Mel Frequency Cepstral Coefficients (MFCCs) and Neural Network. In Proceedings—2018 International Seminar on Application for Technology of Information and Communication, iSemantic 2018 522–527 (2018). https://doi.org/10.1109/ISEMANTIC.2018.8549731
Jiang, W., Liu, P. & Wen, F. Speech magnitude spectrum reconstruction from mfccs using deep neural network. Chin. J. Electron. 27, 393–398 (2018).
Sun, X. Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio. in ICASSP. In IEEE International Conference on Acoustics, Speech and Signal Processing—Proceedings 1, 333–336 (IEEE, 2002).
[ad_2]
Source link