CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Hirst, J. Mitochondrial complex I. Annu. Rev. Biochem. 82, 551–575 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Parey, K., Wirth, C., Vonck, J. & Zickermann, V. Respiratory complex I—structure, mechanism and evolution. Curr. Opin. Struct. Biol. 63, 1–9 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Kaila, V. R. I. Long-range proton-coupled electron transfer in biological energy conversion: towards mechanistic understanding of respiratory complex I. J. R. Soc. Interface 15, 20170916 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Fassone, E. & Rahman, S. Complex I deficiency: clinical features, biochemistry and molecular genetics. J. Med. Genet. 49, 578–590 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Fiedorczuk, K. & Sazanov, L. A. Mammalian mitochondrial complex I structure and disease-causing mutations. Trends Cell Biol. 28, 835–867 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Babot, M., Birch, A., Labarbuta, P. & Galkin, A. Characterisation of the active/de-active transition of mitochondrial complex I. Biochim. Biophys. Acta Bioenerg. 1837, 1083–1092 (2014).

    CAS 

    Google Scholar
     

  • 8.

    Chouchani, E. T. et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab. 23, 254–263 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Stroud, D. A. et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123–126 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Morgner, N. et al. Subunit mass fingerprinting of mitochondrial complex I. Biochim. Biophys. Acta Bioenerg. 1777, 1384–1391 (2008).

    CAS 

    Google Scholar
     

  • 12.

    Kmita, K. & Zickermann, V. Accessory subunits of mitochondrial complex I. Biochem. Soc. Trans. 41, 1272–1279 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Kerscher, S., Dröse, S., Zwicker, K., Zickermann, V. & Brandt, U. Yarrowia lipolytica, a yeast genetic system to study mitochondrial complex I. Biochim. Biophys. Acta Bioenerg. 1555, 83–91 (2002).

    CAS 

    Google Scholar
     

  • 14.

    Tocilescu, M. A., Fendel, U., Zwicker, K., Kerscher, S. & Brandt, U. Exploring the ubiquinone binding cavity of respiratory complex I. J. Biol. Chem. 282, 29514–29520 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Varghese, F., Atcheson, E., Bridges, H. R. & Hirst, J. Characterization of clinically identified mutations in NDUFV1, the flavin-binding subunit of respiratory complex I, using a yeast model system. Hum. Mol. Genet. 24, 6350–6360 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Cabrera-Orefice, A. et al. Locking loop movement in the ubiquinone pocket of complex I disengages the proton pumps. Nat. Commun. 9, 4500 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Galemou Yoga, E. et al. Mutations in a conserved loop in the PSST subunit of respiratory complex I affect ubiquinone binding and dynamics. Biochim. Biophys. Acta Bioenerg. 1860, 573–581 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Zickermann, V. et al. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347, 44–49 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Parey, K. et al. High-resolution cryo-EM structures of respiratory complex I: mechanism, assembly, and disease. Sci. Adv. 5, eaax9484 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Agip, A. A. et al. Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nat. Struct. Mol. Biol. 25, 548–556 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Blaza, J. N., Vinothkumar, K. R. & Hirst, J. Structure of the deactive state of mammalian respiratory complex I. Structure 26, 312–319 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Sharma, V. et al. Redox-induced activation of the proton pump in the respiratory complex I. Proc. Natl Acad. Sci. USA 112, 11571–11576 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Brandt, U. A two-state stabilization-change mechanism for proton-pumping complex I. Biochim. Biophys. Acta Bioenerg. 1807, 1364–1369 (2011).

    CAS 

    Google Scholar
     

  • 24.

    Warnau, J. et al. Redox-coupled quinone dynamics in the respiratory complex I. Proc. Natl Acad. Sci. USA 115, E8413–E8420 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Fedor, J. G., Jones, A. J. Y., Di Luca, A., Kaila, V. R. I. & Hirst, J. Correlating kinetic and structural data on ubiquinone binding and reduction by respiratory complex I. Proc. Natl Acad. Sci. USA 114, 12737–12742 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Baradaran, R., Berrisford, J. M., Minhas, G. S. & Sazanov, L. A. Crystal structure of the entire respiratory complex I. Nature 494, 443–448 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Teixeira, M. H. & Arantes, G. M. Balanced internal hydration discriminates substrate binding to respiratory complex I. Biochim. Biophys. Acta Bioenerg. 1860, 541–548 (2019).


    Google Scholar
     

  • 28.

    Efremov, R. G. & Sazanov, L. A. Structure of the membrane domain of respiratory complex I. Nature 476, 414–421 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Jones, A. J. Y., Blaza, J. N., Varghese, F. & Hirst, J. Respiratory complex I in Bos taurus and Paracoccus denitrificans pumps four protons across the membrane for every NADH oxidized. J. Biol. Chem. 292, 4987–4995 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Galkin, A. S., Grivennikova, V. G. & Vinogradov, A. D. →H+/2e stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles. FEBS Lett. 451, 157–161 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Di Luca, A., Gamiz-Hernandez, A. P. & Kaila, V. R. I. Symmetry-related proton transfer pathways in respiratory complex I. Proc. Natl Acad. Sci. USA 114, E6314–E6321 (2017).

    PubMed 

    Google Scholar
     

  • 32.

    Di Luca, A., Mühlbauer, M. E., Saura, P. & Kaila, V. R. I. How inter-subunit contacts in the membrane domain of complex I affect proton transfer energetics. Biochim. Biophys. Acta Bioenerg. 1859, 734–741 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Kotlyar, A. B. & Vinogradov, A. D. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim. Biophys. Acta Bioenerg. 1019, 151–158 (1990).

    CAS 

    Google Scholar
     

  • 34.

    Meyerson, J. R. et al. Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports. Sci. Rep. 4, 7084 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Parey, K. et al. Cryo-EM structure of respiratory complex I at work. Elife 7, e39213 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Letts, J. A., Fiedorczuk, K., Degliesposti, G., Skehel, M. & Sazanov, L. A. Structures of respiratory supercomplex I+III2 reveal functional and conformational crosstalk. Mol. Cell 75, 1131–1146 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Abdrakhmanova, A., Dobrynin, K., Zwicker, K., Kerscher, S. & Brandt, U. Functional sulfurtransferase is associated with mitochondrial complex I from Yarrowia lipolytica, but is not required for assembly of its iron-sulfur clusters. FEBS Lett. 579, 6781–6785 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    D’Imprima, E. et al. Cryo-EM structure of respiratory complex I reveals a link to mitochondrial sulfur metabolism. Biochim. Biophys. Acta Bioenerg. 1857, 1935–1942 (2016).


    Google Scholar
     

  • 39.

    Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273–4303 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Szőri-Dorogházi, E. et al. Analyses of the large subunit histidine-rich motif expose an alternative proton transfer pathway in [NiFe] hydrogenases. PLoS ONE 7, e34666 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Ogata, H. et al. Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state. Structure 13, 1635–1642 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Haapanen, O. & Sharma, V. Role of water and protein dynamics in proton pumping by respiratory complex I. Sci. Rep. 7, 7747 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Djurabekova, A., Haapanen, O. & Sharma, V. Proton motive function of the terminal antiporter-like subunit in respiratory complex I. Biochim. Biophys. Acta Bioenerg. 1861, 148185 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Guo, R., Zong, S., Wu, M., Gu, J. & Yang, M. Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell 170, 1247–1257 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Gu, J. et al. The architecture of the mammalian respirasome. Nature 537, 639–643 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Laughlin, T. G., Bayne, A. N., Trempe, J. F., Savage, D. F. & Davies, K. M. Structure of the complex I-like molecule NDH of oxygenic photosynthesis. Nature 566, 411–414 (2019).

    PubMed 

    Google Scholar
     

  • 47.

    Tian, W., Chen, C., Lei, X., Zhao, J. & Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 46, W363–W367 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Galkin, A. et al. Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I. J. Biol. Chem. 283, 20907–20913 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Gavrikova, E. V. & Vinogradov, A. D. Active/de-active state transition of the mitochondrial complex I as revealed by specific sulfhydryl group labeling. FEBS Lett. 455, 36–40 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Di Luca, A. & Kaila, V. R. I. Global collective motions in the mammalian and bacterial respiratory complex I. Biochim. Biophys. Acta Bioenerg. 1859, 326–332 (2018).

    PubMed 

    Google Scholar
     

  • 51.

    Banba, A., Tsuji, A., Kimura, H., Murai, M. & Miyoshi, H. Defining the mechanism of action of S1QELs, specific suppressors of superoxide production in the quinone-reaction site in mitochondrial complex I. J. Biol. Chem. 294, 6550–6561 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Matias, P. M. et al. [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 Å and modelling studies of its interaction with the tetrahaem cytochrome c3. J. Biol. Inorg. Chem. 6, 63–81 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION−3.1. IUCrJ 7, 253–267 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Vilas, J. L. et al. MonoRes: automatic and accurate estimation of local resolution for electron microscopy maps. Structure 26, 337–344 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Ramírez-Aportela, E. et al. Automatic local resolution-based sharpening of cryo-EM maps. Bioinformatics 36, 765–772 (2019).


    Google Scholar
     

  • 59.

    de la Rosa-Trevín, J. M. et al. Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy. J. Struct. Biol. 195, 93–99 (2016).

    PubMed 

    Google Scholar
     

  • 60.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 

    Google Scholar
     

  • 61.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Abdrakhmanova, A. et al. Subunit composition of mitochondrial complex I from the yeast Yarrowia lipolytica. Biochim. Biophys. Acta Bioenerg. 1658, 148–156 (2004).

    CAS 

    Google Scholar
     

  • 63.

    Angerer, H. et al. A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I. Biochem. J. 437, 279–288 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Fukasawa, Y. et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteom. 14, 1113–1126 (2015).

    CAS 

    Google Scholar
     

  • 65.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 

    Google Scholar
     

  • 67.

    Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    CAS 

    Google Scholar
     

  • 69.

    Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Ploegman, J. H., Drent, G., Kalk, K. H. & Hol, W. G. J. Structure of bovine liver rhodanese. J. Mol. Biol. 123, 557–594 (1978).

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D Struct. Biol. 74, 814–840 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Bridges, H. R., Mohammed, K., Harbour, M. E. & Hirst, J. Subunit NDUFV3 is present in two distinct isoforms in mammalian complex I. Biochim. Biophys. Acta Bioenerg. 1858, 197–207 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Kumar, P. & Bansal, M. Identification of local variations within secondary structures of proteins. Acta Crystallogr. D Biol. Crystallogr. 71, 1077–1086 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    The PyMOL Molecular Graphics System v.2.2.3 (Schrödinger, 2019).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *