CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Kalogeris, T., Baines, C. P., Krenz, M. & Korthuis, R. J. Ischemia/reperfusion. Compr. Physiol. 7, 113–170 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Abela, C. B. & Homer-Vanniasinkham, S. Clinical implications of ischaemia-reperfusion injury. Pathophysiology 9, 229–240 (2003).

    PubMed 

    Google Scholar
     

  • 3.

    Bronicki, R. A. & Hall, M. Cardiopulmonary bypass-induced inflammatory response: pathophysiology and treatment. Pediatr. Crit. Care Med. 17, S272–S278 (2016).

    PubMed 

    Google Scholar
     

  • 4.

    Kosieradzki, M. & Rowinski, W. Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplant. Proc. 40, 3279–3288 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Braunersreuther, V. & Jaquet, V. Reactive oxygen species in myocardial reperfusion injury: from physiopathology to therapeutic approaches. Curr. Pharm. Biotechnol. 13, 97–114 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Kuznetsov, A. V. et al. The role of mitochondria in the mechanisms of cardiac ischemia-reperfusion injury. Antioxidants (Basel) 8, 454 (2019).

  • 8.

    Tang, J. & Zhuang, S. Histone acetylation and DNA methylation in ischemia/reperfusion injury. Clin. Sci. (Lond.) 133, 597–609 (2019).

    CAS 

    Google Scholar
     

  • 9.

    Tang, J. & Zhuang, S. Epigenetics in acute kidney injury. Curr. Opin. Nephrol. Hypertens. 24, 351–358 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Tessarz, P. & Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Ficz, G. New insights into mechanisms that regulate DNA methylation patterning. J. Exp. Biol. 218, 14–20 (2015).

    PubMed 

    Google Scholar
     

  • 12.

    Jonkhout, N. et al. The RNA modification landscape in human disease. RNA 23, 1754–1769 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Batista, P. J. The RNA Modification N(6)-methyladenosine and Its Implications in Human Disease. Genomics Proteom. Bioinf. 15, 154–163 (2017).


    Google Scholar
     

  • 14.

    Liu, R. J., Long, T., Li, J., Li, H. & Wang, E. D. Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6. Nucleic Acids Res. 45, 6684–6697 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Glasner, H., Riml, C., Micura, R. & Breuker, K. Label-free, direct localization and relative quantitation of the RNA nucleobase methylations m6A, m5C, m3U, and m5U by top-down mass spectrometry. Nucleic Acids Res. 45, 8014–8025 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Malbec, L. et al. Dynamic methylome of internal mRNA N(7)-methylguanosine and its regulatory role in translation. Cell Res. 29, 927–941 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Tuck, M. T. The formation of internal 6-methyladenine residues in eucaryotic messenger RNA. Int J. Biochem. 24, 379–386 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Desrosiers, R., Friderici, K. & Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA 71, 3971–3975 (1974).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Yadav, P. K. & Rajasekharan, R. The m(6)A methyltransferase Ime4 and mitochondrial functions in yeast. Curr. Genet. 64, 353–357 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Yue, H., Nie, X., Yan, Z. & Weining, S. N6-methyladenosine regulatory machinery in plants: composition, function and evolution. Plant Biotechnol. J. 17, 1194–1208 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Lence, T. et al. m(6)A modulates neuronal functions and sex determination in Drosophila. Nature 540, 242–247 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Coker, H., Wei, G. & Brockdorff, N. m6A modification of non-coding RNA and the control of mammalian gene expression. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 310–318 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Erson-Bensan, A. E. & Begik, O. m6A Modification and Implications for microRNAs. MicroRNA 6, 97–101 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Ma, S. et al. The interplay between m6A RNA methylation and noncoding RNA in cancer. J. Hematol. Oncol. 12, 121 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Fu, Y., Dominissini, D., Rechavi, G. & He, C. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat. Rev. Genet 15, 293–306 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Scholler, E. et al. Interactions, localization, and phosphorylation of the m(6)A generating METTL3-METTL14-WTAP complex. RNA 24, 499–512 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Liu, J. et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Schwartz, S. et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites. Cell Rep. 8, 284–296 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Zhao, X. et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24, 1403–1419 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Fu, Y. et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat. Commun. 4, 1798 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Dina, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 39, 724–726 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Boissel, S. et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am. J. Hum. Genet. 85, 106–111 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Ensfelder, T. T. et al. ALKBH5-induced demethylation of mono- and dimethylated adenosine. Chem. Commun. (Camb.) 54, 8591–8593 (2018).

    CAS 

    Google Scholar
     

  • 35.

    Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Zhang, S. et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31, 591–606 e596 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Berlivet, S., Scutenaire, J., Deragon, J. M. & Bousquet-Antonelli, C. Readers of the m(6)A epitranscriptomic code. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 329–342 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Liao, S., Sun, H. & Xu, C. YTH domain: a family of N(6)-methyladenosine (m(6)A) readers. Genomics Proteom. Bioinf. 16, 99–107 (2018).


    Google Scholar
     

  • 40.

    Cienikova, Z., Damberger, F. F., Hall, J., Allain, F. H. & Maris, C. Structural and mechanistic insights into poly(uridine) tract recognition by the hnRNP C RNA recognition motif. J. Am. Chem. Soc. 136, 14536–14544 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Liu, N. et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Vilalva, K. H. et al. Use of methylene blue to treat hypovolemic shock followed by ischemia-reperfusion injury in the postoperative orthotopic liver transplant patient: a case report. Exp. Clin. Transplant. 16, 511–514 (2018).

    PubMed 

    Google Scholar
     

  • 43.

    Chies, A. B. et al. Rivastigmine prevents injury induced by ischemia and reperfusion in rat liver. Acta Cir. Bras. 33, 775–784 (2018).

    PubMed 

    Google Scholar
     

  • 44.

    Nakazato, P. C. G. et al. Liver ischemia and reperfusion injury. Pathophysiology and new horizons in preconditioning and therapy. Acta Cir. Bras. 33, 723–735 (2018).

    PubMed 

    Google Scholar
     

  • 45.

    Yao, W. et al. Intravenous anesthetic protects hepatocyte from reactive oxygen species-induced cellular apoptosis during liver transplantation in vivo. Oxid. Med. Cell Longev. 2018, 4780615 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Wu, H. et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J. Clin. Invest. 117, 2847–2859 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Koutsogiannidis, C. P. & Johnson, E. O. Pharmacological neuroprotection in cardiac surgery: effectiveness of pharmacologic-preconditioning with erythromycin. Curr. Vasc. Pharm. 16, 329–335 (2018).

    CAS 

    Google Scholar
     

  • 48.

    de Perrot, M., Liu, M., Waddell, T. K. & Keshavjee, S. Ischemia-reperfusion-induced lung injury. Am. J. Respir. Crit. Care Med. 167, 490–511 (2003).

    PubMed 

    Google Scholar
     

  • 49.

    Eppinger, M. J., Deeb, G. M., Bolling, S. F. & Ward, P. A. Mediators of ischemia-reperfusion injury of rat lung. Am. J. Pathol. 150, 1773–1784 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Yao, W. et al. Neutrophil elastase inhibitors suppress oxidative stress in lung during liver transplantation. Oxid. Med. Cell Longev. 2019, 7323986 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Weiser, M. R. et al. Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J. Exp. Med. 183, 2343–2348 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Menger, M. D., Pelikan, S., Steiner, D. & Messmer, K. Microvascular ischemia-reperfusion injury in striated muscle: significance of “reflow paradox”. Am. J. Physiol. 263, H1901–H1906 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Junk, A. K. et al. Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 99, 10659–10664 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Oharazawa, H. et al. Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Invest. Ophthalmol. Vis. Sci. 51, 487–492 (2010).

    PubMed 

    Google Scholar
     

  • 55.

    Oliver, C. N. et al. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc. Natl Acad. Sci. USA 87, 5144–5147 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Santos, M. R. et al. The protective effect of cilostazol on isolated rabbit femoral arteries under conditions of ischemia and reperfusion: the role of the nitric oxide pathway. Clinics 67, 171–178 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Ciscato, J. G. Jr. et al. Vascular relaxation of canine visceral arteries after ischemia by means of supraceliac aortic cross-clamping followed by reperfusion. Scand. J. Trauma Resusc. Emerg. Med. 18, 41 (2010).

    PubMed 

    Google Scholar
     

  • 58.

    Bertoni, S., Ballabeni, V., Barocelli, E. & Tognolini, M. Mesenteric ischemia-reperfusion: an overview of preclinical drug strategies. Drug Disco. Today 23, 1416–1425 (2018).

    CAS 

    Google Scholar
     

  • 59.

    Zhao, W. et al. Resveratrol suppresses gut-derived NLRP3 inflammasome partly through stabilizing mast cells in a rat model. Mediators Inflamm. 2018, 6158671 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion–from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Yao, W., Tai, L. W., Liu, Y., Hei, Z. & Li, H. Oxidative stress and inflammation interaction in ischemia reperfusion injury: role of programmed cell death. Oxid. Med. Cell Longev. 2019, 6780816 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Hausenloy, D. J. & Yellon, D. M. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc. Res. 61, 448–460 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Rossello, X. & Yellon, D. M. The RISK pathway and beyond. Basic Res. Cardiol. 113, 2 (2018).

    PubMed 

    Google Scholar
     

  • 64.

    Ghaboura, N. et al. Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3beta signaling. Basic Res. Cardiol. 106, 147–162 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Hausenloy, D. J. & Yellon, D. M. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev. 12, 217–234 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Hadebe, N., Cour, M. & Lecour, S. The SAFE pathway for cardioprotection: is this a promising target? Basic Res. Cardiol. 113, 9 (2018).

    PubMed 

    Google Scholar
     

  • 67.

    Lecour, S. Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J. Mol. Cell Cardiol. 47, 32–40 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Lecour, S. & James, R. W. When are pro-inflammatory cytokines SAFE in heart failure? Eur. Heart J. 32, 680–685 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Inserte, J. & Garcia-Dorado, D. The cGMP/PKG pathway as a common mediator of cardioprotection: translatability and mechanism. Br. J. Pharm. 172, 1996–2009 (2015).

    CAS 

    Google Scholar
     

  • 70.

    Cohen, M. V., Yang, X. M., Liu, Y., Solenkova, N. V. & Downey, J. M. Cardioprotective PKG-independent NO signaling at reperfusion. Am. J. Physiol. Heart Circ. Physiol. 299, H2028–H2036 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Hsu, H. H. et al. Protection against reperfusion lung injury via aborgating multiple signaling cascades by trichostatin A. Int. Immunopharmacol. 25, 267–275 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Evankovich, J. et al. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J. Biol. Chem. 285, 39888–39897 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Kim, K. et al. Effect of valproic acid on acute lung injury in a rodent model of intestinal ischemia reperfusion. Resuscitation 83, 243–248 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Guo, Y. et al. Trichostatin A attenuates oxidative stress-mediated myocardial injury through the FoxO3a signaling pathway. Int. J. Mol. Med 40, 999–1008 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Huang, N., Tan, L., Xue, Z., Cang, J. & Wang, H. Reduction of DNA hydroxymethylation in the mouse kidney insulted by ischemia reperfusion. Biochem. Biophys. Res. Commun. 422, 697–702 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Tampe, B. et al. Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression. Kidney Int. 91, 157–176 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Li, J. et al. Genome-wide analysis of DNA methylation and acute coronary syndrome. Circ. Res. 120, 1754–1767 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Li, D. et al. Genome-wide DNA methylome alterations in acute coronary syndrome. Int J. Mol. Med. 41, 220–232 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Ke, J. et al. Role of DNA methylation in perinatal nicotine-induced development of heart ischemia-sensitive phenotype in rat offspring. Oncotarget 8, 76865–76880 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Endres, M. et al. DNA methyltransferase contributes to delayed ischemic brain injury. J. Neurosci. 20, 3175–3181 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Li, Q. et al. NSUN2-mediated m5C methylation and METTL3/METTL14-mediated m6A methylation cooperatively enhance p21 translation. J. Cell Biochem. 118, 2587–2598 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Anders, M. et al. Dynamic m(6)A methylation facilitates mRNA triaging to stress granules. Life Sci. Alliance 1, e201800113 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Zhong, X. et al. Circadian clock regulation of hepatic lpid metabolism by modulation of m(6)A mRNA methylation. Cell Rep. 25, 1816–1828 e1814 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Fry, N. J., Law, B. A., Ilkayeva, O. R., Holley, C. L. & Mansfield, K. D. N(6)-methyladenosine is required for the hypoxic stabilization of specific mRNAs. RNA 23, 1444–1455 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Wu, L. et al. Association of N(6)-methyladenine DNA with plaque progression in atherosclerosis via myocardial infarction-associated transcripts. Cell Death Dis. 10, 909 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Dorn, L. E. et al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation 139, 533–545 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Song, H. et al. METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 15, 1419–1437 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Shen, F. et al. Decreased N(6)-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5. J. Clin. Endocrinol. Metab. 100, E148–E154 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Mathiyalagan, P. et al. FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139, 518–532 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Wang, X. et al. FTO is required for myogenesis by positively regulating mTOR-PGC-1alpha pathway-mediated mitochondria biogenesis. Cell Death Dis. 8, e2702 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Xuan, Z. et al. Dexmedetomidine postconditioning alleviates hypoxia/reoxygenation injury in senescent myocardial cells by regulating lncRNA H19 and m6A modification. Oxid. Med. Cell Longev. 2020, 9250512 (2020).


    Google Scholar
     

  • 92.

    Saxena, R., Weintraub, N. L. & Tang, Y. Optimizing cardiac ischemic preconditioning and postconditioning via epitranscriptional regulation. Med. Hypotheses 135, 109451 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Leng, T., Shi, Y., Xiong, Z. G. & Sun, D. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog. Neurobiol. 115, 189–209 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 94.

    Galkin, A. Brain ischemia/reperfusion injury and mitochondrial complex I damage. Biochemistry 84, 1411–1423 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 95.

    Xin, Q. et al. Endoplasmic reticulum stress in cerebral ischemia. Neurochem. Int. 68, 18–27 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Liu, J. et al. Neuronal apoptosis in cerebral ischemia/reperfusion area following electrical stimulation of fastigial nucleus. Neural Regen. Res 9, 727–734 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    Yang, Q., Huang, Q., Hu, Z. & Tang, X. Potential neuroprotective treatment of stroke: targeting excitotoxicity, oxidative stress, and inflammation. Front. Neurosci. 13, 1036 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    DeGracia, D. J. Disease of mRNA regulation: relevance for ischemic brain injury. Transl. Stroke Res. 9, 251–257 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Chen, Y. & Zhou, J. LncRNAs: macromolecules with big roles in neurobiology and neurological diseases. Metab. Brain Dis. 32, 281–291 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Yang, J., Chen, M., Cao, R. Y., Li, Q. & Zhu, F. The role of circular RNAs in cerebral ischemic diseases: ischemic stroke and cerebral ischemia/reperfusion injury. Adv. Exp. Med. Biol. 1087, 309–325 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 101.

    Hess, M. E. et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat. Neurosci. 16, 1042–1048 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Widagdo, J. & Anggono, V. The m6A-epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity. J. Neurochem. 147, 137–152 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 103.

    Chokkalla, A. K. et al. Transient focal ischemia significantly alters the m(6)A epitranscriptomic tagging of RNAs in the brain. Stroke 50, 2912–2921 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 104.

    Diao, M. Y. et al. Hypothermia protects neurons against ischemia/reperfusion-induced pyroptosis via m6A-mediated activation of PTEN and the PI3K/Akt/GSK-3beta signaling pathway. Brain Res. Bull. 159, 25–31 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 105.

    Malek, M. & Nematbakhsh, M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J. Ren. Inj. Prev. 4, 20–27 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 106.

    Chen, C. et al. Crosstalk between connexin32 and mitochondrial apoptotic signaling pathway plays a pivotal role in renal ischemia reperfusion-induced acute kidney injury. Antioxid. Redox Signal. 30, 1521–1538 (2018).

    PubMed 

    Google Scholar
     

  • 107.

    Zhuang, C. et al. N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1alpha signalling axis. J. Cell Mol. Med. 23, 2163–2173 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 108.

    Fiorentino, M., Grandaliano, G., Gesualdo, L. & Castellano, G. Acute kidney injury to chronic kidney disease transition. Contrib. Nephrol. 193, 45–54 (2018).

    PubMed 

    Google Scholar
     

  • 109.

    Xu, Y. et al. The N6-methyladenosine mRNA methylase METTL14 promotes renal ischemic reperfusion injury via suppressing YAP1. J. Cell Biochem. 121, 524–533 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 110.

    Aschenbrenner, J. et al. Engineering of a DNA polymerase for direct m(6) A sequencing. Angew. Chem. Int. Ed. Engl. 57, 417–421 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 111.

    Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 112.

    Francis, A. & Baynosa, R. Ischaemia-reperfusion injury and hyperbaric oxygen pathways: a review of cellular mechanisms. Diving Hyperb. Med. 47, 110–117 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 113.

    Pak, S. et al. Platelet adhesion in the sinusoid caused hepatic injury by neutrophils after hepatic ischemia reperfusion. Platelets 21, 282–288 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 114.

    Kalogeris, T., Baines, C. P., Krenz, M. & Korthuis, R. J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 298, 229–317 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *