CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Gandhi, S. & Jain, S. The anatomy and physiology of cornea. Keratoprostheses Artif. Corneas Fundam. Surg. Appl. 37, 19–25 (2015).


    Google Scholar
     

  • 2.

    Meek, K. M. & Knupp, C. Corneal structure and transparency. Prog. Retin. Eye Res. 49, 1–16 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Kotecha, A. What biomechanical properties of the cornea are relevant for the clinician?. Surv. Ophthalmol. 52, 109–114 (2007).


    Google Scholar
     

  • 4.

    Dupps, W. J. & Wilson, S. E. Biomechanics and wound healing in the cornea. Exp. Eye Res. 83, 709–720 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Andreassen, T. T., Hjorth Simonsen, A. & Oxlund, H. Biomechanical properties of keratoconus and normal corneas. Exp. Eye Res. 31, 435–441 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Sorkin, N. & Varssano, D. Corneal collagen crosslinking: A systematic review. Ophthalmologica 232, 10–27 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Ruberti, J. W., Sinha Roy, A. & Roberts, C. J. Corneal biomechanics and biomaterials. Annu. Rev. Biomed. Eng. 13, 269–295 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Bryant, M., Szerenyi, K., Schmotzer, H. & McFonnell, P. Corneal tensile strength in fully healed radial keratotomy wounds. Investig. Ophthalmol. Vis. Sci. 35(7), 3022–3031 (1994).

    CAS 

    Google Scholar
     

  • 9.

    Zeng, Y., Yang, J., Huang, K., Lee, Z. & Lee, X. A comparison of biomechanical properties between human and porcine cornea. J. Biomech. 34, 533–537 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Wollensak, G., Spoerl, E. & Seiler, T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J. Cataract Refract. Surg. 29, 1780–1785 (2003).

    PubMed 

    Google Scholar
     

  • 11.

    Boschetti, F., Triacca, V., Spinelli, L. & Pandolfi, A. Mechanical characterization of porcine corneas. J. Biomech. Eng. https://doi.org/10.1115/1.4006089 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Bekesi, N., Dorronsoro, C., De La Hoz, A. & Marcos, S. Material properties from air puff corneal deformation by numerical simulations on model corneas. PLoS ONE https://doi.org/10.1371/journal.pone.0165669 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Elsheikh, A. et al. Assessment of corneal biomechanical properties and their variation with age. Curr. Eye Res. 32, 11–19 (2007).

    PubMed 

    Google Scholar
     

  • 14.

    Elsheikh, A., Wang, D. & Pye, D. Determination of the modulus of elasticity of the human cornea. J. Refract. Surg. 23, 808–818 (2007).

    PubMed 

    Google Scholar
     

  • 15.

    Elsheikh, A., Alhasso, D. & Rama, P. Biomechanical properties of human and porcine corneas. Exp. Eye Res. 86, 783–790 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Kennedy, K. M. et al. Quantitative micro-elastography: Imaging of tissue elasticity using compression optical coherence elastography. Sci. Rep. 5, 15538 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Fang, Q. et al. Handheld probe for quantitative microelastography. Biomed. Opt. Express 10(8), 4034–4049 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Sanderson, R. W. et al. Finger-mounted quantitative microelastography. . Biomed. Opt. Express 10(4), 1760–1773 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Zvietcovich, F. et al. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers. Nat. Commun. 10, 4895 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Grasland-Mongrain, P. et al. Ultrafast imaging of cell elasticity with optical microelastography. Proc. Natl. Acad. Sci. 115(5), 861–866 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Liou, H.-C. et al. Nondestructive characterization of soft materials and biofilms by measurement of guided elastic wave propagation using optical coherence elastography. Soft Matter 15(4), 575–586 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Ambroziński, Ł et al. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity. Sci. Rep. 6, 38967 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Han, Z. et al. Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model. J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).

    PubMed 

    Google Scholar
     

  • 24.

    Zvietcovich, F. et al. Longitudinal shear waves for elastic characterization of tissues in optical coherence elastography. Biomed. Opt. Express 10(7), 3699–3718 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Ramier, A., Tavakol, B. & Yun, S.-H. Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography. Opt. Express 27(12), 16635–16649 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Kirby, M. A. et al. Optical coherence elastography in ophthalmology. J. Biomed. Opt. 22, 1 (2017).

    PubMed 

    Google Scholar
     

  • 27.

    Larin, K. V. & Sampson, D. D. Optical coherence elastography—OCT at work in tissue biomechanics [Invited]. Biomed. Opt. Express 8, 1172 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Singh, M. et al. Assessing the effects of riboflavin/UV-A crosslinking on porcine corneal mechanical anisotropy with optical coherence elastography. Biomed. Opt. Express 8, 349–366 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Petsche, S. J., Chernyak, D., Martiz, J., Levenston, M. E. & Pinsky, P. M. Depth-dependent transverse shear properties of the human corneal stroma. Investig. Ophthalmol. Vis. Sci. 53, 873–880 (2012).


    Google Scholar
     

  • 30.

    Hatami-Marbini, H. Viscoelastic shear properties of the corneal stroma. J. Biomech. 47, 723–728 (2014).

    PubMed 

    Google Scholar
     

  • 31.

    Sloan, S. R., Khalifa, Y. M. & Buckley, M. R. The location- and depth-dependent mechanical response of the human cornea under shear loading. Investig. Ophthalmol. Vis. Sci. 55, 7919–7924 (2014).


    Google Scholar
     

  • 32.

    Quantock, A. J. et al. From nano to macro: Studying the hierarchical structure of the corneal extracellular matrix. Exp. Eye Res. 133, 81–99 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Winkler, M. et al. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. Investig. Ophthalmol. Vis. Sci. 52, 8818–8827 (2011).


    Google Scholar
     

  • 34.

    Komai, Y. & Ushiki, T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Investig. Ophthalmol. Vis. Sci. 32, 2244–2258 (1991).

    CAS 

    Google Scholar
     

  • 35.

    Li, J. et al. Revealing anisotropic properties of cornea at different intraocular pressures using optical coherence elastography. Opt. Elastogr. Tissue Biomech. III 9710, 97100T (2016).


    Google Scholar
     

  • 36.

    Singh, M. et al. Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence elastography. J. Refract. Surg. 32, 562–567 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Elsheikh, A. & Alhasso, D. Mechanical anisotropy of porcine cornea and correlation with stromal microstructure. Exp. Eye Res. 88, 1084–1091 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Bell, J. S. et al. The hierarchical response of human corneal collagen to load. Acta Biomater. 65, 216–225 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Nguyen, T. M., Aubry, J. F., Fink, M., Bercoff, J. & Tanter, M. In vivo evidence of porcine cornea anisotropy using supersonic shear wave imaging. Investig. Ophthalmol. Vis. Sci. 55, 7545–7552 (2014).


    Google Scholar
     

  • 40.

    Winkler, M. et al. A comparative study of vertebrate corneal structure: The evolution of a refractive lens. Investig. Ophthalmol. Vis. Sci. 56, 2764–2772 (2015).

    CAS 

    Google Scholar
     

  • 41.

    Winkler, M. et al. Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma. Investig. Ophthalmol. Vis. Sci. 54, 7293–7301 (2013).

    CAS 

    Google Scholar
     

  • 42.

    Li, L.-Y. & Tighe, B. The anisotropic material constitutive models for the human cornea. J. Struct. Biol. 153, 223–230 (2006).

    PubMed 

    Google Scholar
     

  • 43.

    O’Donnell, M. & Skovoroda, A. R. Prospects for elasticity reconstruction in the heart. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 322–328 (2004).

    PubMed 

    Google Scholar
     

  • 44.

    Eltony, A. M., Shao, P., & Yun, S.-H. Measuring mechanical anisotropy of the cornea with Brillouin microscopy. https://arXiv.org/2003.04344v1 (2020).

  • 45.

    Li, J., Han, Z., Singh, M., Twa, M. D. & Larin, K. V. Differentiating untreated and cross-linked porcine corneas of the same measured stiffness with optical coherence elastography. J. Biomed. Opt. 19, 110502 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Han, Z. et al. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: A comparison study. Phys. Med. Biol. 60, 3531–3547 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Tanuma, K. Stroh formalism and Rayleigh waves. J. Elasticity 89, 5–154 (2007).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 48.

    Cherry, M. R., Sathish, S. & Grandhi, R. A numerical method for predicting Rayleigh surface wave velocity in anisotropic crystals. J. Comput. Phys. 351, 108–120 (2017).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 49.

    Ting, T. C. T. The Stroh Formalism. In: Anisotropic Elasticity, Theory and Applications, 155–184 (1996).

  • 50.

    Chadwick, P. & Smith, G. Foundations of the theory of surface waves in anisotropic elastic materials. Adv. Appl. Mech. 17, 303–376 (1977).

    MATH 

    Google Scholar
     

  • 51.

    Barnett, D. M. Synthesis of the sextic and the integral formalism for dislocations, Green’s function and surface waves in anisotropic elastic solids. Phys. Norv. 7, 13 (1973).


    Google Scholar
     

  • 52.

    Pelivanov, I. et al. Does group velocity always reflect elastic modulus in shear wave elastography?. J. Biomed. Opt. 24, 1 (2019).

    PubMed 

    Google Scholar
     

  • 53.

    Kirby, M. A. et al. Spatial resolution in dynamic optical coherence elastography. J. Biomed. Opt. 24, 1 (2019).

    PubMed 

    Google Scholar
     

  • 54.

    Brekhovskikh, L. M. Waves in Layered Media (Academic Press, New York, 1976).


    Google Scholar
     

  • 55.

    Krauklis, P. V. & Molotkov, L. A. Low-frequency lamb waves in cylindrical and spherical layers in an elastic medium. J. Soviet Math. 3, 82–90 (1975).

    MATH 

    Google Scholar
     

  • 56.

    Webb, J. N. & Scarcelli, G. Brillouin microscopy measurement of the anisotropic properties of the cornea. Invest. Ophthalmol. Vis. Sci. 60(9), 6816 (2019).


    Google Scholar
     

  • 57.

    Anderson, K., El-Sheikh, A. & Newson, T. Application of structural analysis to the mechanical behaviour of the cornea. J. R. Soc. Interface 1, 3–15 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Luce, D. A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract Refract. Surg. 31, 156–162 (2005).

    PubMed 

    Google Scholar
     

  • 59.

    Roberts, C. J. Importance of accurately assessing biomechanics of the cornea. Curr. Opin. Ophthalmol. 27, 285–291 (2016).

    PubMed 

    Google Scholar
     

  • 60.

    Loewn, N. A. & Tanna, A. P. Glaucoma Risk Factors: Intraocular Pressure. In Clinical Glaucoma Care (eds Samples, J. R. & Schacknow, P. N.) 1–22 (Springer, New York, 2014).


    Google Scholar
     

  • 61.

    Esporcatte, L. P. G. et al. Biomechanical diagnostics of the cornea. Eye Vis. 7, 75 (2020).


    Google Scholar
     

  • 62.

    Roberts, C. J. Clinical assessment of ocular biomechanics (Conference Presentation). in Proceeding SPIE 11242, Optical Elastography and Tissue Biomechanics VII (2020).

  • 63.

    How University of Washington is Developing a Novel Medical Device with OnScale Simulation (Case Study). https://onscale.com/case-studies/university-of-washington/ (2020).

  • 64.

    Ambroziński, Ł et al. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media. Appl. Phys. Lett. 109, 043701 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Scruby, C. B. Some applications of laser ultrasound. Ultrasonics 27, 195–209 (1989).


    Google Scholar
     

  • 66.

    Fowlkes, J. B. & Bioeffects Committee of the American Institute of Ultrasound in Medicine. American Institute of Ultrasound in Medicine consensus report on potential bioeffects of diagnostic ultrasound: Executive summary. J. Ultra. Med. 27(4), 503–515 (2008).


    Google Scholar
     

  • 67.

    Song, S. et al. Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography. J. Biomed. Opt. 18, 121509 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Wang, R. K. & Nuttall, A. L. Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: A preliminary study. J. Biomed. Opt. 15, 056005 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Wang, R. K., Kirkpatrick, S. & Hinds, M. Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Appl. Phys. Lett. 90, 164105 (2007).

    ADS 

    Google Scholar
     

  • 70.

    Schulmeister, K. The upcoming new editions of IEC 60825–1 and ANSI Z136.1—Examples on impact for classification and exposure limits. Proceeding of the International Laser Safety Conference. March 18–21, 2013, Orlando, Florida, 330–337.

  • 71.

    Pavlakovic, B., Lowe, M., Alleyne, D. & Cawley, P. Disperse: A general purpose program for creating dispersion curves. In Review of Progress in Quantitative Nondestructive Evaluation (eds Thompson, D. O. & Chimenti, D. E.) 185–192 (Springer, Boston, 1997).


    Google Scholar
     

  • 72.

    Kharine, A. et al. Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography. Phys. Med. Biol. 48(3), 357–370 (2003).

    PubMed 

    Google Scholar
     

  • 73.

    Timoshenko, S. & Woinowsky-Krieger, S. Theory of Plates and Shells 2nd edn. (McGraw-Hill, New York, 1959).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *