CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Huflejt, M. E. et al. Anti-carbohydrate antibodies of normal sera: Findings, surprises and challenges. Mol. Immunol. 46, 3037–3049 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Schnaar, R. L., Suzuki, A. & Stanley, P. Glycosphingolipids. Essentials of Glycobiology (Cold Spring Harbor Laboratory Press, 2009).

  • 3.

    McVey, J. et al. Anti-A and anti-B titers in donor plasma, plasma pools, and immunoglobulin final products. Transfusion 55, S98–S104 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Springer, G. F. Blood-group and Forssman antigenic determinants shared between microbes and mammalian cells (Part 1 of 3). Progress Allergy 15, 9–29 (1971).

    CAS 

    Google Scholar
     

  • 5.

    Alaniz, M. E., Lardone, R. D., Yudowski, S. L., Farace, M. I. & Nores, G. A. Normally occurring human anti-GM1 immunoglobulin M antibodies and the immune response to bacteria. Infect. Immun. 72, 2148–2151 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Mizutamari, R. K., Wiegandt, H. & Nores, G. A. Characterization of anti-ganglioside antibodies present in normal human plasma. J. Neuroimmunol. 50, 215–220 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Gleeson, P. A. Glycoconjugates in autoimmunity. Biochim. Biophys. Acta Gene Struct. Expr. 1197, 237–255 (1994).


    Google Scholar
     

  • 8.

    Willison, H. J. & Yuki, N. Peripheral neuropathies and anti-glycolipid antibodies. Brain 125, 2591–2625 (2002).

    PubMed 

    Google Scholar
     

  • 9.

    Kaida, K. Antibodies to glycoconjugates in autoimmune neuropathies. Clin. Exp. Neuroimmunol. 6, 387–394 (2015).

    CAS 

    Google Scholar
     

  • 10.

    Yuki, N. A bacterium lipopolysaccharide that elicits Guillain-Barre syndrome has a GM1 ganglioside-like structure. J. Exp. Med. 178, 1771–1775 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Yuki, N. et al. Molecular mimicry between GQ1b ganglioside and lipopolysaccharides of Campylobacter jejuni isolated from patients with Fisher’s syndrome. Ann. Neurol. 36, 791–793 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Yuki, N. et al. Penner’s serotype 4 of Campylobacter jejuni has a lipopolysaccharide that bears a GM1 ganglioside epitope as well as one that bears a GD1a epitope. Infect. Immun. 62, 2101–2103 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Nachamkin, I. et al. Ganglioside GM1 mimicry in Campylobacter strains from sporadic infections in the United States. J. Infect. Dis. 179, 1183–1189 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Allos, B. M. Association between Campylobacter infection and Guillain-Barré syndrome. J. Infect. Dis. 176, S125–S128 (1997).

    PubMed 

    Google Scholar
     

  • 15.

    Lopez, P. H. H., Lardone, R. D., Irazoqui, F. J., Maccioni, M. & Nores, G. A. The origin of anti-GM1 antibodies in neuropathies: The ‘binding site drift’ hypothesis. Neurochem. Res. 27, 687–695 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Nores, G. A. et al. Anti-GM1 antibodies as a model of the immune response to self-glycans. Biochim. Biophys. Acta – Gen. Subj. 1780, 538–545 (2008).

    CAS 

    Google Scholar
     

  • 17.

    Lardone, R. D., Irazoqui, F. J. & Nores, G. A. Most of anti-glycolipid IgG-antibodies associated to neurological disorders occur without their IgM counterpart. J. Biomed. Sci. 26 (2019).

  • 18.

    Haas, K. M., Poe, J. C., Steeber, D. A. & Tedder, T. F. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 23, 7–18 (2005).

  • 19.

    Castigli, E. et al. TACI and BAFF-R mediate isotype switching in B cells. J. Exp. Med. 201, 35–39 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Vidarsson, G., Dekkers, G. & Rispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 5, 520 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Gharavi, A. E., Harris, E. N., Lockshin, M. D., Hughes, G. R. & Elkon, K. B. IgG subclass and light chain distribution of anticardiolipin and anti-DNA antibodies in systemic lupus erythematosus. Ann. Rheum. Dis. 47, 286–290 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Yount, W. J., Cohen, P. & Eisenberg, R. A. Distribution of IgG subclasses among human autoantibodies to Sm, RNP, dsDNA, SS-B and IgG rheumatoid factor. Monogr. Allergy 23, 41–56 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Wang, W. & Li, J. Predominance of IgG1 and IgG3 subclasses of autoantibodies to peptidylarginine deiminase 4 in rheumatoid arthritis. Clin. Rheumatol. 30, 563–567 (2011).

    PubMed 

    Google Scholar
     

  • 24.

    Buckley, R. H. Immunoglobulin G subclass deficiency: Fact or fancy?. Curr. Allergy Asthma Rep. 2, 356–360 (2002).

    PubMed 

    Google Scholar
     

  • 25.

    Hjelholt, A., Christiansen, G., Sørensen, U. S. & Birkelund, S. IgG subclass profiles in normal human sera of antibodies specific to five kinds of microbial antigens. Pathog. Dis. 67, 206–213 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Stevens, T. L. et al. Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature 334, 255–258 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Xu, S. & Cao, X. Interleukin-17 and its expanding biological functions. Cell. Mol. Immunol. 7, 164–174 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Mestas, J. & Hughes, C. C. W. Of mice and not men: Differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Ogino, M., Orazio, N. & Latov, N. IgG anti-GM1 antibodies from patients with acute motor neuropathy are predominantly of the IgG1 and IgG3 subclasses. J. Neuroimmunol. 58, 77–80 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Willison, H. J. & Veitch, J. Immunoglobulin subclass distribution and binding characteristics of anti-GQ1b antibodies in Miller Fisher syndrome. J. Neuroimmunol. 50, 159–165 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Koga, M. et al. Anti-GM1 antibody IgG subclass: A clinical recovery predictor in Guillain-Barré syndrome. Neurology 60, 1514–1518 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Jacobs, B. C. et al. Subclass IgG to motor gangliosides related to infection and clinical course in Guillain-Barré syndrome. J. Neuroimmunol. 194, 181–190 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Buchmann, K. Evolution of innate immunity: Clues from invertebrates via fish to mammals. Front. Immunol. 5 (2014).

  • 35.

    Nores, G. A., Dennis, R. D., Helling, F. & Wiegandt, H. Human heterophile antibodies recognizing epitopes present on insect glycolipids. J. Biochem. 110, 1–8 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Chudwin, D. S., Artrip, S. G. & Schiffman, G. Immunoglobulin G class and subclass antibodies to pneumococcal capsular polysaccharides. Clin. Immunol. Immunopathol. 44, 114–121 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Haji-Ghassemi, O., Blackler, R. J., Young, N. M. & Evans, S. V. Antibody recognition of carbohydrate epitopes. Glycobiology 25, 920–952 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Siber, G. R., Schur, P. H., Aisenberg, A. C., Weitzman, S. A. & Schiffman, G. Correlation between serum IgG-2 concentrations and the antibody response to bacterial polysaccharide antigens. N. Engl. J. Med. 303, 178–182 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Ferrante, A., Beard, L. J. & Feldman, R. G. IgG subclass distribution of antibodies to bacterial and viral antigens. Pediatr. Infect. Dis. J. 9, S16-24 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Allman, D. & Pillai, S. Peripheral B cell subsets. Curr. Opin. Immunol. 20, 149–157 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Montecino-Rodriguez, E. & Dorshkind, K. B-1 B cell development in the fetus and adult. Immunity 36, 13–23 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Cerutti, A., Cols, M. & Puga, I. Marginal zone B cells: Virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol. 13, 118–132 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Obukhanych, T. V. & Nussenzweig, M. C. T-independent type II immune responses generate memory B cells. J. Exp. Med. 203, 305–310 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Seifert, M. et al. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. Proc. Natl. Acad. Sci. U. S. A. 112, E546–E555 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Berkowska, M. A. et al. Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood 118, 2150–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    del Carmen Fernández-Alonso, M. et al. Protein-carbohydrate interactions studied by NMR: from molecular recognition to drug design. Curr. Protein Pept. Sci. 13, 816–830 (2012).

  • 47.

    Putterman, C., Limpanasithikul, W., Edelman, M. & Diamond, B. The double edged sword of the immune response: Mutational analysis of a murine anti-pneumococcal, anti-DNA antibody. J. Clin. Invest. 97, 2251–2259 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Berek, C. & Milstein, C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol. Rev. 96, 23–41 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Leadbetter, E. A. et al. NK T cells provide lipid antigen-specific cognate help for B cells. Proc. Natl. Acad. Sci. U. S. A. 105, 8339–8344 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Song, H. & Cerny, J. Functional heterogeneity of marginal zone B cells revealed by their ability to generate both early antibody-forming cells and germinal centers with hypermutation and memory in response to a T-dependent antigen. J. Exp. Med. 198, 1923–1935 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Ho, T. W. et al. Anti-GD1a antibody is associated with axonal but not demyelinating forms of Guillain-Barré syndrome. Ann. Neurol. 45, 168–173 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Gupta, P. K., Singhi, P., Singhi, S., Kasinathan, A. & Sankhyan, N. How different is AMAN from AIDP in childhood GBS? A prospective study from North India. Indian J. Pediatr. 86, 329–334 (2019).

    PubMed 

    Google Scholar
     

  • 53.

    Lardone, R. D. et al. Individual restriction of fine specificity variability in anti-GM1 IgG antibodies associated with Guillain-Barré syndrome. Sci. Rep. 6, 19901 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Ge, S. et al. Associations of serum anti-ganglioside antibodies and inflammatory markers in diabetic peripheral neuropathy. Diabetes Res. Clin. Pract. 115, 68–75 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Wanleenuwat, P., Iwanowski, P. & Kozubski, W. Antiganglioside antibodies in neurological diseases. J. Neurol. Sci. 408, 116576 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Ministry of Health of Argentina. Ethical Guidelines on Research Involving Human Subjects. Guía para Investigaciones con Seres Humanos (2011). https://servicios.infoleg.gob.ar/infolegInternet/anexos/185000-189999/187206/texact.htm. Accessed 21st Mar 2019.

  • 57.

    Dennis, R. D. et al. Glycosphingolipids in insects: Chemical structures of ceramide monosaccharide, disaccharide, and trisaccharide from pupae of Calliphora vicina (Insecta: Diptera). Eur. J. Biochem. 146, 51–58 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Yu, R. K. & Ledeen, R. W. Gangliosides of human, bovine, and rabbit plasma. J. Lipid Res. 13, 680–686 (1972).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Watanabe, K. & Arao, Y. A new solvent system for the separation of neutral glycosphingolipids. J. Lipid Res. 22, 1020–1024 (1981).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Cumar, F. A., Barra, H. S., Maccioni, H. J. & Caputto, R. Sulfation of glycosphingolipids and related carbohydrates by brain preparations from young rats. J. Biol. Chem. 243, 3807–3816 (1968).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Winer, M. A. & Terryberry, J. W. Glycolipid (excluding ganglioside) autoantibodies. in Autoantibodies 314–324 (Elsevier, London, 1996). https://doi.org/10.1016/B978-044482383-0/50046-7

  • 63.

    Conrad, K. et al. A new line immunoassay for the multiparametric detection of antiganglioside autoantibodies in patients with autoimmune peripheral neuropathies. Ann. N. Y. Acad. Sci. 1109, 256–264 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Nores, G. A., Mizutamari, R. K. & Kremer, D. M. Chromatographic tank designed to obtain highly reproducible high-performance thin-layer chromatograms of gangliosides and neutral glycosphingolipids. J. Chromatogr. A 686, 155–157 (1994).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *