CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. U.S.A. 101, 8998–9002 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).


    Google Scholar
     

  • 3.

    Koizumi, I., Usio, N., Kawai, T., Azuma, N. & Masuda, R. Loss of genetic diversity means loss of geological information: The endangered japanese crayfish exhibits remarkable historical footprints. PLoS ONE 7(3), e33986. https://doi.org/10.1371/journal.pone.0033986 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Nazari, V., Schmidt, B. C., Prosser, S. & Hebert, P. D. N. Century-old DNA barcodes reveal phylogenetic placement of the extinct Jamaican Sunset Moth, Urania sloanus Cramer (Lepidoptera: Uraniidae). PLoS ONE 11(10), e0164405. https://doi.org/10.1371/journal.pone.0164405 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Nazari, V., Tarmann, G. & Efetov, K. A. Phylogenetic position of the ‘extinct’ Fijian coconut moth, Levuana iridescens (Lepidoptera: Zygaenidae). PLoS ONE 14(12), e0225590. https://doi.org/10.1371/journal.pone.0225590 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Kim, Y. S. Illustrated Book of Korean Butterflies in Color (Kyo-Hak Publishing, Seoul, 2002).


    Google Scholar
     

  • 7.

    Park, J. S., Cho, Y., Kim, M. J., Nam, S. H. & Kim, I. Description of complete mitochondrial genome of the black-veined white, Aporia crataegi (Lepidoptera: Papilionoidea), and comparison to papilionoid species. J. Asia-Pac. Entomol. 15, 331–341 (2012).

    CAS 

    Google Scholar
     

  • 8.

    Park, H. C. et al. DNA barcode analysis for conservation of an endangered species, Aporia crataegi (Lepidoptera, Pieridae) in Korea. J. Seric. Entomol. Sci. 51, 201–206 (2013).


    Google Scholar
     

  • 9.

    Della Bruna, C., Gallo, E. & Sbordoni, V. Pieridae, part I (2nd edition). Guide to the Butterflies of the Palearctic Region (ed. Bozano, G. C.) (Omnes Artes, 2013).

  • 10.

    Savela, M. Lepidoptera and some other life forms https://www.nic.funet.fi/pub/sci/bio/life/insecta/lepidoptera/ (2018). Accessed 10 November 2019.

  • 11.

    Braby, M. F., Vila, R. & Pierce, N. E. Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): Higher classification and biogeography. Zool. J. Linn. Soc. 147, 239–275 (2006).


    Google Scholar
     

  • 12.

    Wahlberg, N., Rota, J., Braby, M. F., Pierce, N. E. & Wheat, C. W. Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data. Zool. Scr. 43, 641–650 (2014).


    Google Scholar
     

  • 13.

    Ding, C. & Zhang, Y. Phylogenetic relationships of Pieridae (Lepidoptera: Papilionoidea) in China based on seven gene fragments. Entomol. Sci. 20, 15–23 (2017).


    Google Scholar
     

  • 14.

    Klots, A. B. A generic classification of the Pieridae (Lepidoptera) together with a study of the male genitalia. Entomol. Am. 12, 13–242 (1933).


    Google Scholar
     

  • 15.

    Braby, M. F. Provisional checklist of genera of the Pieridae (Lepidoptera: Papilionidae). Zootaxa 832, 1–16 (2005).


    Google Scholar
     

  • 16.

    Chou, I. Monograph of Chinese Butterflies, First Volume (Henan Scientific and Technological Publishing House, Zhengzhou, 1999).


    Google Scholar
     

  • 17.

    Wu, C. Fauna Sinica, Insecta vol. 52, Lepidoptera, Pieridae (Science Press, Beijing, 2010).


    Google Scholar
     

  • 18.

    Ding, C. & Zhang, Y. Phylogenetic relationships of the genera Aporia and Mesapia (Lepidoptera: Pieridae) based on COI and EF1α gene sequences. Acta Entomol. Sin. 59(8), 880–887 (2016).


    Google Scholar
     

  • 19.

    Della Bruna, C., Gallo, E., Sbordoni, V. & Bozano, G. C. Addenda to the genus Aporia Hübner, [1819] (Lepidoptera: Pieridae). Nachrichten des Entomologischen Vereins Apollo N. F. 29(4), 205–209 (2009).


    Google Scholar
     

  • 20.

    Deodati, T. Filogenesi molecolare, barcoding e stima dei tempi evolutivi in tre gruppi di farfalle diurne (Insecta: Lepidoptera) a distribuzione Sino-Himalayana (PhD thesis) (University of Rome Tor Vergata, 2010).

  • 21.

    Allan, P. B. M. Moths and Memories 1st edn. (Watkins & Doncaster, Pudleston, 1948).


    Google Scholar
     

  • 22.

    Jugovic, J., Črne, M. & Lužnik, M. Movement, demography and behaviour of a highly mobile species: A case study of the black-veined white, Aporia crataegi (Lepidoptera: Pieridae). Eur. J. Entomol. 114, 113–122 (2017).


    Google Scholar
     

  • 23.

    Kim, T. G., Han, Y. G., Kwon, O. & Cho, Y. Changes in Aporia crataegi’s potential habitats in accordance with climate changes in the northeast Asia. J. Ecol. Environ. 38(1), 15–23 (2015).


    Google Scholar
     

  • 24.

    van Swaay, C. et al. Aporia crataegi. The IUCN Red List of Threatened Species; https://www.iucnredlist.org (2014). Accessed 10 November 2019.

  • 25.

    van Swaay, C. et al. Aporia crataegi. The IUCN Red List of Threatened Species; https://www.iucnredlist.org (2010). Accessed 10 November 2019.

  • 26.

    Ivanova, N. V., deWaard, J. R. & Hebert, P. D. N. An inexpensive, automation friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6, 998–1002 (2006).

    CAS 

    Google Scholar
     

  • 27.

    Prosser, S. W. J., de Waard, J. R., Miller, S. E. & Hebert, P. D. N. DNA barcodes from century-old type specimens using next-generation sequencing. Mol. Ecol. Resour. 16(2), 487–497 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Hajibabaei, M. et al. Critical factors for assembling a high volume of DNA barcodes. Philos. Trans. R. Soc. Lond. B 360, 1959–1967 (2005).

    CAS 

    Google Scholar
     

  • 29.

    deWaard, J. R., Ivanova, N. V., Hajibabaei, M. & Hebert, P. D. N. Assembling DNA barcodes: Analytical protocols. Method Mol. Biol. Environ. Genet. 410, 275–293 (2008).

    CAS 

    Google Scholar
     

  • 30.

    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006).

    CAS 

    Google Scholar
     

  • 36.

    Boc, A., Diallo, A. B. & Makarenkov, V. T-REX: A web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 40(W1), W573–W579 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Rambaut, A. Figtree v1.4. https://tree.bio.ed.ac.uk/software/figtree (2012). Accessed 23 November 2019.

  • 38.

    Kimura, M. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet. Res. 11, 247–269 (1968).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Ramos-Onsins, S. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Ramirez-Soriano, A., Ramos-Onsins, S. E., Rozas, J., Calafell, F. & Navarro, A. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179, 555–567 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Holsinger K. E. Tajima’s D, Fu’s F S, Fay and Wu’s H, and Zeng et al.’s E. in Lecture Notes in Population Genetics (ed. Holsinger, K. E. 2001-2019) 291–296 (University of Connecticut, 2017).

  • 43.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Hudson, R. R. Gene genealogies and the coalescent process. In Oxford Surveys in Evolutionary Biology (eds Futuyma, D. J. & Antonovics, J. D.) 1–44 (Oxford University Press, Oxford, 1990).


    Google Scholar
     

  • 45.

    Schneider, S. & Excoffier, L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA. Genetics 152, 1079–1089 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Ray, N., Currat, M. & Excoffier, L. Intra-deme molecular diversity in spatially expanding populations. Mol. Biol. Evol. 20, 76–86 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Excoffier, L. Patterns of DNA sequence diversity and genetic structure after a range expansion: Lessons from the infinite-island model. Mol. Ecol. 13, 853–864 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato, inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. U.S.A. 91, 6491–6495 (1994).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Tadokoro, T., Koide, Y. & Hori, K. Description of a new subspecies of Mesapia peloria from central Nepal, and taxonomic notes for other subspecies (Lepidoptera, Pieridae). Lepidoptera Sci. 65(2), 51–59 (2014).


    Google Scholar
     

  • 50.

    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4(1), 11 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Dapporto, L. et al. Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Mol. Ecol. Resour. 00, 1–14 (2019).


    Google Scholar
     

  • 52.

    Ehlers, J., Astakhov, V., Gibbard, P. L., Mangerud, J. & Svendsen, J. I. Late pleistocene glaciations in Europe. In Encyclopedia of Quaternary Science (ed. Elias, S. A.) 1085–1095 (Elsevier, Hoboken, 2006).


    Google Scholar
     

  • 53.

    King, R. A. & Ferris, C. Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Mol. Ecol. 7, 1151–1161 (1998).

    CAS 

    Google Scholar
     

  • 54.

    Wallis, G. P. & Arntzen, J. W. Mitochondrial-DNA variation in the crested newt superspecies: Limited cytoplasmic gene flow among species. Evolution 43, 88–104 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Dapporto, L. Speciation in Mediterranean refugia and post-glacial expansion of Zerynthia polyxena (Lepidoptera, Papilionidae). J. Zool. Syst. Evol. Res. 48(3), 229–237 (2010).


    Google Scholar
     

  • 56.

    Galtier, N., Nabholz, B., Glémin, S. & Hurst, G. D. D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Ecol. 18(22), 4541–4550 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: Results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9(4), e95525. https://doi.org/10.1371/journal.pone.0095525 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Sanmartin, I. Dispersal vs. vicariance in the Mediterranean: historical biogeography of the Palearctic Pachydeminae (Coleoptera, Scarabaeoidea). J. Biogeogr. 30, 1883–1897 (2003).


    Google Scholar
     

  • 59.

    Krijgsman, W. The Mediterranean: Mare nostrum of earth sciences. Earth Planet. Sci. Lett. 205, 1–12 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Steininger, F. F. & Rogl, F. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.) 659–668 (Geological Society Special Publication. Blackwell Scientific Publications, Hoboken, 1996).


    Google Scholar
     

  • 61.

    De Jong, H. In search of historical biogeographic patterns in the western Mediterranean terrestrial fauna. Biol. J. Linnean Soc. 65, 99–164 (1998).


    Google Scholar
     

  • 62.

    Nazari, V., Ten Hagen, W. & Bozano, G. C. Molecular systematics and phylogeny of the ‘Marbled Whites’ (Lepidoptera: Nymphalidae, Satyrinae, Melanargia Meigen). Syst. Entomol. 35, 132–147 (2010).


    Google Scholar
     

  • 63.

    Todisco, V. et al. Molecular phylogeny of the Palaearctic butterfly genus Pseudophilotes (Lepidoptera: Lycaenidae) with focus on the Sardinian endemic P. barbagiae. BMC Zool. 3, 4 (2018).


    Google Scholar
     

  • 64.

    Dinca, V., Dapporto, L. & Vila, R. A combined genetic-morphometric analysis unravels the complex biogeographical history of Polyommatus icarus and Polyommatus celina common blue butterflies. Mol. Ecol. 20, 3921–3935 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Sañudo-Restrepo, C. P., Dinca, V., Talavera, G. & Vila, R. Biogeography and systematics of Aricia butterflies (Lepidoptera, Lycaenidae). Mol. Phylogenet. Evol. 66, 369–379 (2013).

    PubMed 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *