CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Scully, T. Diabetes in numbers. Nature 485(7398), S2 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Godsland, I. F. & Walton, C. Maximizing the success rate of minimal model insulin sensitivity measurement in humans: The importance of basal glucose levels. Clin. Sci. 101(1), 1–9 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Mclachlan, K., Jenkins, A. & O’neal, D. The role of continuous glucose monitoring in clinical decision-making in diabetes in pregnancy. Aust. NZ. J. Obstet. Gyn. 47(3), 186–190 (2007).


    Google Scholar
     

  • 4.

    Lin, T., Gal, A., Mayzel, Y., Horman, K. & Bahartan, K. Non-invasive glucose monitoring: A review of challenges and recent advances. Curr. Trends Biomed. Eng. Biosci. 6, 1–8 (2017).


    Google Scholar
     

  • 5.

    Burt, M. G., Roberts, G. W., Aguilar-Loza, N. R. & Stranks, S. N. Brief report: Comparison of continuous glucose monitoring and finger-prick blood glucose levels in hospitalized patients administered basal-bolus insulin. Diabetes Technol. 15(3), 241–245 (2013).

    CAS 

    Google Scholar
     

  • 6.

    Boyd, R., Leigh, B. & Stuart, P. Capillary versus venous bedside blood glucose estimations. Emerg. Med. J. 22(3), 177–179 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Tierney, M. J. et al. Clinical evaluation of the GlucoWatch biographer: A continual, non-invasive glucose monitor for patients with diabetes. Biosens. Bioelectron. 16(9–12), 621–629 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Wang, G. & Mintchev, M. P. Development of wearable semi-invasive blood sampling devices for continuous glucose monitoring: A survey. Engineering 5(5), 42 (2013).

    CAS 

    Google Scholar
     

  • 9.

    Cobelli, C., Renard, E. & Kovatchev, B. Artificial pancreas: Past, present, future. Diabetes 60(11), 2672–2682 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Bernardi, L., & Ampliscientifica, S. Wearable artificial pancreas. United States patent US 5,176,632. (1993).

  • 11.

    Gingras, V. et al. Impact of erroneous meal insulin bolus with dual-hormone artificial pancreas using a simplified bolus strategy-A randomized controlled trial. Sci. Rep.-UK 8(1), 2621 (2018).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 12.

    Albisser, A. M. et al. Clinical control of diabetes by the artificial pancreas. Diabetes 23(5), 397–404 (1974).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Phillip, M. et al. Nocturnal glucose control with an artificial pancreas at a diabetes camp. N. Engl. J. Med. 368(9), 824–833 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    El-Khatib, F. H., Russell, S. J., Nathan, D. M., Sutherlin, R. G. & Damiano, E. R. A bi-hormonal closed-loop artificial pancreas for type 1 diabetes. Sci. Transl. Med. 2(27), 27ra27 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Tze, W. J., Wong, F. C., Chen, L. M. & O’young, S. Implantable artificial endocrine pancreas unit used to restore normoglycaemia in the diabetic rat. Nature 264(5585), 466 (1976).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Yadav, J., Rani, A., Singh, V. & Murari, B. M. Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomed. Signal Process. 18, 214–227 (2015).


    Google Scholar
     

  • 17.

    Goodarzi, M. & Saeys, W. Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum. Talanta 146, 155–165 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Spegazzini, N. et al. Spectroscopic approach for dynamic bioanalyte tracking with minimal concentration information. Sci. Rep.-UK 4, 7013 (2014).

    CAS 

    Google Scholar
     

  • 19.

    Kuroda, M. et al. Effects of daily glucose fluctuations on the healing response to everolimus-eluting stent implantation as assessed using continuous glucose monitoring and optical coherence tomography. Cardiovasc. Diabetol. 15(1), 79 (2016).

    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Sim, J. Y., Ahn, C. G., Jeong, E. J. & Kim, B. K. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products. Sci. Rep.-UK 8(1), 1059 (2018).

    ADS 

    Google Scholar
     

  • 21.

    Lipani, L. et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13(6), 504 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Kim, J., Campbell, A. S. & Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta 177, 163–170 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Malchoff, C. D., Shoukri, K., Landau, J. I. & Buchert, J. M. A novel noninvasive blood glucose monitor. Diabetes Care 25(12), 2268–2275 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    De Castro, L. F. et al. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. Anal. Bioanal. Chem. 411(19), 4919–4928 (2019).

    PubMed 

    Google Scholar
     

  • 25.

    Karyakin, A. A. et al. Non-invasive monitoring of diabetes through analysis of the exhaled breath condensate (aerosol). Electrochem. Commun. 83, 81–84 (2017).

    CAS 

    Google Scholar
     

  • 26.

    Karpova, E. V. et al. Noninvasive diabetes monitoring through continuous analysis of sweat using flow-through glucose biosensor. Anal. Chem. 91(6), 3778–3783 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Bhide, A., Muthukumar, S., Saini, A. & Prasad, S. Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat. Sci. Rep.-UK 8(1), 6507 (2018).

    ADS 

    Google Scholar
     

  • 28.

    Bariya, M., Nyein, H. Y. Y. & Javey, A. Wearable sweat sensors. Nat. Electron. 1(3), 160 (2018).


    Google Scholar
     

  • 29.

    Sempionatto, J. R. et al. Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosens. Bioelectron. 137, 161–170 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Baghelani, M., Abbasi, Z. & Daneshmand, M. Noncontact high sensitivity chipless tag microwave resonator for bitumen concentration measurement at high temperatures. Fuel 265, 116916 (2020).

    CAS 

    Google Scholar
     

  • 31.

    Abbasi, Z., Shariaty, P., Nosrati, M., Hashisho, Z. & Daneshmand, M. Dual-band microwave circuits for selective binary gas sensing system. IEEE T. Microw. Theory. 67(10), 4206–4219 (2019).


    Google Scholar
     

  • 32.

    Zarifi, M. H., Sadabadi, H., Hejazi, S. H., Daneshmand, M. & Sanati-Nezhad, A. Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering. Sci. Rep.-UK 8(1), 139 (2018).

    ADS 

    Google Scholar
     

  • 33.

    Liu, W., Yang, X., Niu, Y. & Sun, H. Improve planar multiple split-ring resonator sensor for microwave detection applications. Sens. Actuator A- Phys. 297, 111542 (2019).

    CAS 

    Google Scholar
     

  • 34.

    Tsai, T. T. et al. High throughput and label-free particle sensor based on microwave resonators. Sens. Actuator A- Phys. 285, 652–658 (2019).

    CAS 

    Google Scholar
     

  • 35.

    Benlamri, M. et al. Planar microwave resonator with electrodeposited ZnO thin film for ultraviolet detection. Semicond. Sci. Technol. 35(2), 025003 (2019).

    ADS 

    Google Scholar
     

  • 36.

    Jha, A. K., Delmonte, N., Lamecki, A., Mrozowski, M. & Bozzi, M. Design of microwave-based angular displacement sensor. IEEE Microw. Wirel. Co. 29(4), 306–308 (2019).


    Google Scholar
     

  • 37.

    Nosrati, M., Abbasi, Z., Baghelani, M., Bhadra, S. & Daneshmand, M. Locally strong-coupled microwave resonator using PEMC boundary for distant sensing applications. IEEE Trans. Microw. Theory. 67(10), 4130–4139 (2019).


    Google Scholar
     

  • 38.

    Camli, B. et al. A microwave ring resonator based glucose sensor. Proc. Eng. 168, 465–468 (2016).

    CAS 

    Google Scholar
     

  • 39.

    Chretiennot, T., Dubuc, D. & Grenier, K. Microwave-based microfluidic sensor for non-destructive and quantitative glucose monitoring in aqueous solution. Sensors 16(10), 1733 (2016).


    Google Scholar
     

  • 40.

    Bahar, A. A. M. et al. Real time microwave biochemical sensor based on circular SIW approach for aqueous dielectric detection. Sci. Rep.-UK 9(1), 5467 (2019).

    ADS 

    Google Scholar
     

  • 41.

    Choi, H. et al. Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor. IEEE Trans. Microw. Theory. 63(10), 3016–3025 (2015).

    CAS 

    Google Scholar
     

  • 42.

    Kim, N. Y. et al. Rapid, sensitive, and reusable detection of glucose by a robust radiofrequency integrated passive device biosensor chip. Sci. Rep.-UK 5, 7807 (2015).


    Google Scholar
     

  • 43.

    Sharafadinzadeh, N., Abdolrazzaghi, M. & Daneshmand, M. Investigation on planar microwave sensors with enhanced sensitivity from microfluidic integration. Sens. Actuator A- Phys. 301, 111752 (2020).

    CAS 

    Google Scholar
     

  • 44.

    Kapilevich, B. & Litvak, B. Optimized microwave sensor for online concentration measurements of binary liquid mixtures. IEEE Sens. J. 11(10), 2611–2616 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Juan, C. G. et al. Concentration measurement of microliter-volume water-glucose solutions using q factor of microwave sensors. IEEE Trans. Instrum. Meas. 68(7), 2621–2634 (2019).

    CAS 

    Google Scholar
     

  • 46.

    Turgul, V. & Kale, I. Permittivity extraction of glucose solutions through artificial neural networks and non-invasive microwave glucose sensing. Sens. Actuator A- Phys. 277, 65–72 (2018).

    CAS 

    Google Scholar
     

  • 47.

    Chakyar, S. P., Simon, K. S., Bindu, C., Andrews, J. & Joseph, V. P. Complex permittivity measurement using metamaterial split ring resonators. J. Appl. Phys. 121(5), 054101 (2017).

    ADS 

    Google Scholar
     

  • 48.

    Aezinia, F. & Bahreyni, B. An interface circuit with wide dynamic range for differential capacitive sensing applications. IEEE Trans. Circuits II. 60(11), 766–770 (2013).


    Google Scholar
     

  • 49.

    Yang, C. L., Lee, C. S., Chen, K. W. & Chen, K. Z. Noncontact measurement of complex permittivity and thickness by using planar resonators. IEEE Trans. Microw. Theory 64(1), 247–257 (2015).

    CAS 

    Google Scholar
     

  • 50.

    Kim, J. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8(1), 1–8 (2017).


    Google Scholar
     

  • 51.

    Pu, Z. et al. A flexible electrochemical glucose sensor with composite nanostructured surface of the working electrode. Sens. Actuator B- Chem. 230, 801–809 (2016).

    CAS 

    Google Scholar
     

  • 52.

    Lee, H. et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3(3), 1601314 (2017).

    ADS 

    Google Scholar
     

  • 53.

    Haxha, S. & Jhoja, J. Optical based noninvasive glucose monitoring sensor prototype. IEEE Photonics J. 8(6), 1–11 (2016).


    Google Scholar
     

  • 54.

    Kumari, R., Patel, P. N. & Yadav, R. An ENG resonator-based microwave sensor for the characterization of aqueous glucose. J. Phys. D Appl. Phys. 51(7), 075601 (2018).

    ADS 

    Google Scholar
     

  • 55.

    Camli, B. et al. Cost-effective, microstrip antenna driven ring resonator microwave biosensor for biospecific detection of glucose. IEEE J. Sel. Top. Quant. 23(2), 404–409 (2017).


    Google Scholar
     

  • 56.

    Govind, G. & Akhtar, M. J. Metamaterial-inspired microwave microfluidic sensor for glucose monitoring in aqueous solutions. IEEE Sens. J. 19(24), 11900–11907 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Diem, K. & Lentner, C. Blood-Inorganic Substances. Documents Geigy Scientific Tables 565 (Ciba-Geigy Limited, Basle, 1970).


    Google Scholar
     

  • 58.

    Qing, X., Chen, Z.N., See, T.S.P., Goh, C.K. & Chiam, T.M., Characterization of RF transmission in human body. In 2010 IEEE Antennas and Propagation Society International Symposium, 1–4 (2010).

  • 59.

    Peyman, A., Rezazadeh, A. A. & Gabriel, C. Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies. Phys. Med. 47(12), 2187 (2002).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *