CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Clarke, P. R. R. Fractures of the orbit: (Proceedings of the symposium on orbital fractures, 19–20 April, 1969, Amsterdam). J. Neurol. Sci. 14, 121 (1971).


    Google Scholar
     

  • 2.

    Jha, K. & Rajalakshmi, A. Evaluation and management of orbital trauma. J. Clin. Ophthalmol. Res. 6, 77–82 (2018).


    Google Scholar
     

  • 3.

    Paluch, J. Interdisciplinary surgical management of orbital and maxillo-ethmoidal complex disorders. In Clinical Management and Evolving Novel Therapeutic Strategies for Patients with Brain Tumors (ed. Markowski, J.) 571–595 (IntechOpen, London, 2013). https://doi.org/10.5772/53486.


    Google Scholar
     

  • 4.

    Weinzweig, J., Taub, P. J. & Bartlett, S. P. Fractures of the orbit. In Plastic Surgery Secrets Plus 2nd edn (ed. Weinzweig, J.) 299–307 (Mosby, Maryland Heights, 2010). https://doi.org/10.1016/B978-0-323-03470-8.00046-6.


    Google Scholar
     

  • 5.

    Bregstein, J., Roskind, C. G. & Sonnett, F. M. Emergency medicine. In Pediatric Secrets 5th edn (eds Polin, R. A. & Ditmar, M. F.) 154–196 (Mosby, Maryland Heights, 2011). https://doi.org/10.1016/B978-0-323-06561-0.00005-7.


    Google Scholar
     

  • 6.

    Hogg, N. J. V., Stewart, T. C., Armstrong, J. E. A. & Girotti, M. J. Epidemiology of maxillofacial injuries at trauma hospitals in Ontario, Canada, between 1992 and 1997. J. Trauma Acute Care Surg. 49, 425–432 (2000).

    CAS 

    Google Scholar
     

  • 7.

    Shin, J. W., Lim, J. S., Yoo, G. & Byeon, J. H. An analysis of pure blowout fractures and associated ocular symptoms. J. Craniofac. Surg. 24, 703–707 (2013).

    PubMed 

    Google Scholar
     

  • 8.

    Einy, S., Abdel Rahman, N., Siman-Tov, M., Aizenbud, D. & Peleg, K. Maxillofacial trauma following road accidents and falls. J. Craniofac. Surg. 27, 857–861 (2016).

    PubMed 

    Google Scholar
     

  • 9.

    Converse, J. M. & Smith, B. Reconstruction of the floor of the orbit by bone grafts. Arch. Ophthalmol. 44, 1–21 (1950).

    CAS 

    Google Scholar
     

  • 10.

    Smith, B. & Regan, W. F. Jr. Blow-out fracture of the orbit: mechanism and correction of internal orbital fracture. Am. J. Ophthalmol. 44, 733–739 (1957).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Bandyopadhyay, T. K. & Sapru, B. L. Management of an isolated orbital blow-out fracture. Med. J. Armed Forces India 60, 392–394 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Felding, U. N. A. Blowout fractures—clinic, imaging and applied anatomy of the orbit. Dan. Med. J. 65, 1–9 (2018).


    Google Scholar
     

  • 13.

    Fujino, T. Experimental, “blowout” fracture of the orbit. Plast. Reconstr. Surg. 54, 81–82 (1974).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Fujino, T. & Makino, K. Entrapment mechanism and ocular injury in orbital blowout fracture. Plast. Reconstr. Surg. 65, 575–576 (1980).


    Google Scholar
     

  • 15.

    Nagasao, T. et al. The effect of striking angle on the buckling mechanism in blowout fracture. Plast. Reconstr. Surg. 117, 2373–2380 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Al-Sukhun, J., Kontio, R. & Lindqvist, C. Orbital stress analysis—part I: simulation of orbital deformation following blunt injury by finite element analysis method. J. Oral Maxillofac. Surg. 64, 434–442 (2006).

    PubMed 

    Google Scholar
     

  • 17.

    Ross, C. F. et al. In vivo bone strain and finite-element modeling of the craniofacial haft in catarrhine primates. J. Anat. 218, 112–141 (2011).

    PubMed 

    Google Scholar
     

  • 18.

    Al-Sukhun, J., Penttilä, H. & Ashammakhi, N. Orbital stress analysis, part V: systematic approach to validate a finite element model of a human orbit. J. Craniofac. Surg. 23, 669–674 (2012).

    PubMed 

    Google Scholar
     

  • 19.

    Patel, S., Andrecovich, C., Silverman, M., Zhang, L. & Shkoukani, M. Biomechanic factors associated with orbital floor fractures. JAMA Facial Plast. Surg. 19, 298–302 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Foletti, J. M. et al. Development and validation of an optimized finite element model of the human orbit. J. Stomatol. Oral Maxillofac. Surg. 120, 16–20 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Foletti, J. M. et al. Finite element analysis of the human orbit. Behavior of titanium mesh for orbital floor reconstruction in case of trauma recurrence. J. Stomatol. Oral Maxillofac. Surg. 120, 91–94 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Skorek, A. Dynamic Analysis of Orbital Blow-Out Injury Based on Numerical Model of the Orbit and Clinical Observations (Medical University of Gdansk, Gdansk, 2013).


    Google Scholar
     

  • 23.

    Kłosowski, P., Skorek, A. & Zmuda Trzebiatowski, M. Static and dynamic modelling blow-out type of trauma of orbital wall. In Shell Structures: Theory and Applications Vol. 3 (eds Pietraszkiewicz, W. & Gorski, J.) 347–350 (CRC Press/Balkema, Boca Raton, 2014). https://doi.org/10.1201/b15684-86.


    Google Scholar
     

  • 24.

    Skorek, A. et al. Posttraumatic orbital emphysema: a numerical model. J. Ophthalmol. 2014, 1–5 (2014).


    Google Scholar
     

  • 25.

    Waterhouse, N., Lyne, J., Urdang, M. & Garey, L. An investigation into the mechanism of orbital blowout fractures. Br. J. Plast. Surg. 52, 607–612 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Morgan, E. F., Bayraktar, H. H. & Keaveny, T. M. Trabecular bone modulus-density relationships depend on anatomic site. J. Biomech. 36, 897–904 (2003).

    PubMed 

    Google Scholar
     

  • 27.

    Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 28.

    Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 29.

    World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjectsworld medical association declaration of helsinkispecial communication. JAMA 310, 2191–2194 (2013).


    Google Scholar
     

  • 30.

    Microsoft Corporation, MSC. Marc/Mentat Manual (2019).

  • 31.

    Schaller, A., Huempfner-Hierl, H., Hemprich, A. & Hierl, T. Biomechanical mechanisms of orbital wall fractures—a transient finite element analysis. J. Cranio-Maxillofac. Surg. 41, 710–717 (2013).


    Google Scholar
     

  • 32.

    Rosenbluth, W. Investigation and Interpretation of Black Box Data in Automobiles: A Guide to the Concepts and Formats of Computer Data in Vehicle Safety and Control Systems (Society of Automotive Engineers, Warrendale, 2001). https://doi.org/10.1520/MONO4-EB.


    Google Scholar
     

  • 33.

    Nordhoff, L. S. J. Motor Vehicle Collision Injuries: Biomechanics, Diagnosis, and Management (Jones & Bartlett Learning, Burlington, 2005).


    Google Scholar
     

  • 34.

    Strutt, J. W. The Theory of Sound. Cambridge Library Collection—Physical Sciences Vol. 1 (Cambridge University Press, Cambridge, 2011).


    Google Scholar
     

  • 35.

    Huang, B. W., Kung, H. K., Chang, K. Y., Hsu, P. K. & Tseng, J. G. Human cranium dynamic analysis. Life Sci. J. 6, 15–22 (2009).


    Google Scholar
     

  • 36.

    Houbolt, J. C. A recurrence matrix solution for the dynamic response of elastic aircraft. J. Aeronaut. Sci. 17, 540–550 (1950).

    MathSciNet 

    Google Scholar
     

  • 37.

    Nagasao, T., Miyamoto, J., Shimizu, Y., Jiang, H. & Nakajima, T. What happens between pure hydraulic and buckling mechanisms of blowout fractures?. J. Cranio-Maxillofac. Surg. 38, 306–313 (2010).


    Google Scholar
     

  • 38.

    Warwar, R. E., Bullock, J. D., Ballal, D. R. & Ballal, R. D. Mechanisms of orbital floor fractures: a clinical, experimental, and theoretical study. Ophthalmic Plast. Reconstr. Surg. 16, 188–200 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Ahmad, F., Kirkpatrick, N. A., Lyne, J., Urdang, M. & Waterhouse, N. Buckling and hydraulic mechanisms in orbital blowout fractures: fact or fiction?. J. Craniofac. Surg. 17, 438–441 (2006).

    PubMed 

    Google Scholar
     

  • 40.

    Pal, S. Mechanical properties of biological materials. In Design of Artificial Human Joints and Organs (ed. Pal, S.) 23–40 (Springer, Berlin, 2014). https://doi.org/10.1007/978-1-4614-6255-2_2.


    Google Scholar
     

  • 41.

    Seong, W.-J. et al. Elastic properties and apparent density of human edentulous maxilla and mandible. Int. J. Oral Maxillofac. Surg. 38, 1088–1093 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Dechow, P. C., Wang, Q. & Peterson, J. Edentulation alters material properties of cortical bone in the human craniofacial skeleton: functional implications for craniofacial structure in primate evolution. Anat. Rec. 293, 618–629 (2010).


    Google Scholar
     

  • 43.

    Robbins, D. H. & Wood, J. L. Determination of mechanical properties of the bones of the skull. Exp. Mech. 9, 236–240 (1969).


    Google Scholar
     

  • 44.

    Peterson, J. & Dechow, P. C. Material properties of the human cranial vault and zygoma. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. 274A, 785–797 (2003).


    Google Scholar
     

  • 45.

    Schutte, S., van den Bedem, S. P. W., van Keulen, F., van der Helm, F. C. T. & Simonsz, H. J. A finite-element analysis model of orbital biomechanics. Vis. Res. 46, 1724–1731 (2006).

    PubMed 

    Google Scholar
     

  • 46.

    Duck, F. A. Chapter 4—acoustic properties of tissue at ultrasonic frequencies. In Physical Properties of Tissues (ed. Duck, F. A.) 73–135 (Academic Press, Cambridge, 1990). https://doi.org/10.1016/B978-0-12-222800-1.50008-5.


    Google Scholar
     

  • 47.

    Schoemaker, I. et al. Elasticity, viscosity, and deformation of orbital fat. Investig. Ophthalmol. Vis. Sci. 47, 4819–4826 (2006).


    Google Scholar
     

  • 48.

    McKee, C. T., Last, J. A., Russell, P. & Murphy, C. J. Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Eng. Part B Rev. 17, 155–164 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Mukherjee, S., Chawla, A. & Karthikeyan, B. A review of the mechanical properties of human body soft tissues in the head, neck and spine. Inst. Eng. J. 87, 10–24 (2006).


    Google Scholar
     

  • 50.

    Roberts, J. C. et al. Computational and experimental models of the human torso for non-penetrating ballistic impact. J. Biomech. 40, 125–136 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    The European Parliament and the Council of the European Union. Directive 2004/23/EC of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells. Off. J. Eur. Union 102, 48–58 (2004).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *