CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Rosell, M. S., Hellenius, M. L., de Faire, U. H. & Johansson, G. K. Associations between diet and the metabolic syndrome vary with the validity of dietary intake data. Am. J. Clin. Nutr. 78, 84–90 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Poslusna, K., Ruprich, J., de Vries, J. H., Jakubikova, M. & van’t Veer, P. Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. Br. J. Nutr. 101(Suppl. 2), 73–85 (2009).


    Google Scholar
     

  • 3.

    Freisling, H. et al. Dietary reporting errors on 24 h recalls and dietary questionnaires are associated with BMI across six European countries as evaluated with recovery biomarkers for protein and potassium intake. Br. J. Nutr. 107, 910–920 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Ioannidis, J. P. A. The challenge of reforming nutritional epidemiologic research. JAMA 320, 969–970 (2018).

    PubMed 

    Google Scholar
     

  • 5.

    Brennan, L. & Hu, F. B. Metabolomics-based dietary biomarkers in nutritional epidemiology—current status and future opportunities. Mol. Nutr. Food Res. 63, e1701064 (2019).

    PubMed 

    Google Scholar
     

  • 6.

    Guasch-Ferre, M., Bhupathiraju, S. N. & Hu, F. B. Use of metabolomics in improving assessment of dietary intake. Clin. Chem. 64, 82–98 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Ulaszewska, M. M. et al. Nutrimetabolomics: an integrative action for metabolomic analyses in human nutritional studies. Mol. Nutr. Food Res. 63, e1800384 (2019).

    PubMed 

    Google Scholar
     

  • 8.

    Price, N. D. et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat. Biotechnol. 35, 747–756 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Holmes, E. et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453, 396–400 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Nicholson, J. K. & Wilson, I. D. High-resolution proton magnetic-resonance spectroscopy of biological-fluids. Prog. Nucl. Magn. Reson. Spectrosc. 21, 449–501 (1989).

    CAS 

    Google Scholar
     

  • 12.

    Gavaghan, C. L., Holmes, E., Lenz, E., Wilson, I. D. & Nicholson, J. K. An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett. 484, 169–174 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Stella, C. et al. Susceptibility of human metabolic phenotypes to dietary modulation. J. Proteome Res. 5, 2780–2788 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Nicholson, G. et al. Human metabolic profiles are stably controlled by genetic and environmental variation. Mol. Syst. Biol. 7, 525 (2011).

  • 15.

    Heinzmann, S. S. et al. Stability and robustness of human metabolic phenotypes in response to sequential food challenges. J. Proteome Res. 11, 643–655 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Garcia-Perez, I. et al. Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial. Lancet Diabetes Endocrinol. 5, 184–195 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Gibbons, H. et al. Demonstration of the utility of biomarkers for dietary intake assessment; proline betaine as an example. Mol. Nutr. Food Res. 61, 1700037 (2017).

  • 19.

    Scalbert, A. et al. The food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 99, 1286–1308 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Fenech, M. Nutrition and genome health. Forum Nutr. 60, 49–65 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Stamler, J. et al. INTERMAP: background, aims, design, methods, and descriptive statistics (nondietary). J. Hum. Hypertens. 17, 591–608 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Dennis, B. et al. INTERMAP: the dietary data—process and quality control. J. Hum. Hypertens. 17, 609–622 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Posma, J. M. et al. Integrated analytical and statistical two-dimensional spectroscopy strategy for metabolite identification: application to dietary biomarkers. Anal. Chem. 89, 3300–3309 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    McLean, R. M. Measuring population sodium intake: a review of methods. Nutrients 6, 4651–4662 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Yi, S. S. & Kansagra, S. M. Associations of sodium intake with obesity, body mass index, waist circumference, and weight. Am. J. Prev. Med. 46, 53–55 (2014).


    Google Scholar
     

  • 26.

    Elliott, P. et al. Urinary metabolic signatures of human adiposity. Sci. Transl. Med. 7, 285ra262 (2015).


    Google Scholar
     

  • 27.

    Aburto, N. J. et al. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 346, f1326 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Teague, C. et al. Ethyl glucoside in human urine following dietary exposure: detection by 1H NMR spectroscopy as a result of metabonomic screening of humans. Analyst 129, 259–264 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Dahl, H., Stephanson, N., Beck, O. & Helander, A. Comparison of urinary excretion characteristics of ethanol and ethyl glucuronide. J. Anal. Toxicol. 26, 201–204 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Svensson, B. G., Akesson, B., Nilsson, A. & Paulsson, K. Urinary-excretion of methylamines in men with varying intake of fish from the Baltic Sea. J. Toxicol. Environ. Health 41, 411–420 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Zhang, A. Q., Mitchell, S. C. & Smith, R. L. Dietary precursors of trimethylamine in man: a pilot study. Food Chem. Toxicol. 37, 515–520 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    de Zwart, F. J. et al. Glycine betaine and glycine betaine analogues in common foods. Food Chem. 83, 197–204 (2003).


    Google Scholar
     

  • 33.

    Heinzmann, S. S. et al. Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption. Am. J. Clin. Nutr. 92, 436–443 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Pujos-Guillot, E. et al. Mass spectrometry-based metabolomics for the discovery of biomarkers of fruit and vegetable intake: citrus fruit as a case study. J. Proteome Res. 12, 1645–1659 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Posma, J. M., Robinette, S. L., Holmes, E. & Nicholson, J. K. MetaboNetworks, an interactive Matlab-based toolbox for creating, customizing and exploring sub-networks from KEGG. Bioinformatics 30, 893–895 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Drewnowski, A. Defining nutrient density: development and validation of the nutrient rich foods index. J. Am. Coll. Nutr. 28, 421–426 (2009).


    Google Scholar
     

  • 37.

    Mellen, P. B., Gao, S. K., Vitolins, M. Z. & Goff, D. C. Deteriorating dietary habits among adults with hypertension. Arch. Intern. Med. 168, 308–314 (2008).

    PubMed 

    Google Scholar
     

  • 38.

    Molitor, J. et al. Blood pressure differences associated with Optimal Macronutrient Intake Trial for Heart Health (OMNIHEART)-like diet compared with a typical American diet. Hypertension 64, 1198–1204 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Posma, J. M. et al. Optimized phenotypic biomarker discovery and confounder elimination via covariate-adjusted projection to latent structures from metabolic spectroscopy data. J. Proteome Res. 17, 1586–1595 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    World Health Organization & Food and Agriculture Organization Diet, Nutrition and the Prevention of Chronic Diseases Technical Report Series 916 (World Health Organization, 2003).

  • 41.

    Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 336, 1117–1124 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Tasevska, N., Runswick, S. A. & Bingham, S. A. Urinary potassium is as reliable as urinary nitrogen for use as a recovery biomarker in dietary studies of free living individuals. J. Nutr. 136, 1334–1340 (2006).

    PubMed 

    Google Scholar
     

  • 43.

    Mente, A., Irvine, E. J., Honey, R. J. D. & Logan, A. G. Urinary potassium is a clinically useful test to detect a poor quality diet. J. Nutr. 139, 743–749 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Kesteloot, H. et al. Relation of urinary calcium and magnesium excretion to blood pressure: the International Study of Macro- and Micro-nutrients and Blood Pressure and the International Cooperative Study on Salt, other Factors, and Blood Pressure. Am. J. Epidemiol. 174, 44–51 (2011).

    PubMed 

    Google Scholar
     

  • 45.

    Garcia-Perez, I. et al. Urinary metabolic phenotyping the slc26a6 (chloride–oxalate exchanger) null mouse model. J. Proteome Res. 11, 4425–4435 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Midttun, O., Ulvik, A., Nygard, O. & Ueland, P. M. Performance of plasma trigonelline as a marker of coffee consumption in an epidemiologic setting. Am. J. Clin. Nutr. 107, 941–947 (2018).

    PubMed 

    Google Scholar
     

  • 47.

    Whitton, C. et al. National Diet and Nutrition Survey: UK food consumption and nutrient intakes from the first year of the rolling programme and comparisons with previous surveys. Br. J. Nutr. 106, 1899–1914 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Iwahori, T. et al. Six random specimens of daytime casual urine on different days are sufficient to estimate daily sodium/potassium ratio in comparison to 7-day 24-h urine collections. Hypertens. Res. 37, 765–771 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Wilson, T. et al. Spot and cumulative urine samples are suitable replacements for 24-hour urine collections for objective measures of dietary exposure in adults using metabolite biomarkers. J. Nutr. 149, 1692–1700 (2019).

    PubMed 

    Google Scholar
     

  • 50.

    Garcia-Perez, I. et al. An analytical pipeline for quantitative characterization of dietary intake: application to assess grape intake. J. Agric. Food Chem. 64, 2423–2431 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Dumas, M. E. et al. Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP study. Anal. Chem. 78, 2199–2208 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Smith, L. M. et al. Large-scale human metabolic phenotyping and molecular epidemiological studies via 1H NMR spectroscopy of urine: investigation of borate preservation. Anal. Chem. 81, 4847–4856 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Keun, H. C. et al. Analytical reproducibility in 1H NMR-based metabonomic urinalysis. Chem. Res. Toxicol. 15, 1380–1386 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Nicholson, J. K. et al. Metabolic phenotyping in clinical and surgical environments. Nature 491, 384–392 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Garcia-Perez, I. et al. Dietary metabotype modelling predicts individual responses to dietary interventions. Nat. Food https://doi.org/10.1038/s43016-020-0092-z (2020).

  • 56.

    Holmes, E. et al. Detection of urinary drug metabolite (Xenometabolome) signatures in molecular epidemiology studies via statistical total correlation (NMR) spectroscopy. Anal. Chem. 79, 2629–2640 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Dieterle, F., Ross, A., Schlotterbeck, G. & Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 78, 4281–4290 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Posma, J. M. et al. Subset Optimization by Reference Matching (STORM): an optimized statistical approach for recovery of metabolic biomarker structural information from 1H NMR spectra of biofluids. Anal. Chem. 84, 10694–10701 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Garcia-Perez, I. et al. Identifying unknown metabolites using NMR-based metabolic profiling techniques. Nat. Protoc. (in the press).

  • 60.

    Macdiarmid, J. & Blundell, J. Assessing dietary intake: who, what and why of under-reporting. Nutr. Res. Rev. 11, 231–253 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Maroni, B. J., Steinman, T. I. & Mitch, W. E. A method for estimating nitrogen intake of patients with chronic renal-failure. Kidney Int. 27, 58–65 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Mariotti, F., Tome, D. & Mirand, P. P. Converting nitrogen into protein—beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 48, 177–184 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Black, A. E. Critical evaluation of energy intake using the Goldberg cut-off for energy intake: basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. 24, 1119–1130 (2000).

    CAS 

    Google Scholar
     

  • 64.

    Schofield, W. N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 39(Suppl. 1), 5–41 (1985).

    PubMed 

    Google Scholar
     

  • 65.

    Fulgoni, V. L. III, Keast, D. R. & Drewnowski, A. Development and validation of the nutrient-rich foods index: a tool to measure nutritional quality of foods. J. Nutr. 139, 1549–1554 (2009).

    PubMed 

    Google Scholar
     

  • 66.

    Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • 67.

    Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    The Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  • 70.

    Hoffmann, C. et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE 8, e66019 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Gaci, N., Borrel, G., Tottey, W., O’Toole, P. W. & Brugere, J. F. Archaea and the human gut: new beginning of an old story. World J. Gastroenterol. 20, 16062–16078 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Jaccard, P. Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bull. Soc. Vaudoise Sci. Nat. 37, 241–272 (1901).


    Google Scholar
     

  • 73.

    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 74.

    Guimera, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 75.

    Wang, Z. & Zhang, J. Z. In search of the biological significance of modular structures in protein networks. PLoS Comput. Biol. 3, 1011–1021 (2007).

    CAS 

    Google Scholar
     

  • 76.

    Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *